
 

 





 

 

BUREAU OF INFRASTRUCTURE AND TRANSPORT RESEARCH ECONOMICS 

 

 

 

 

 

 

 

 

 

 

 

 

The economics of road maintenance 

Research report 156 
 

 

 

 

 

 

 

 

 

 

 

 

  



THE ECONOMICS OF ROAD MAINTENANCE ii 

Foreword 

 

© Commonwealth of Australia 2023 
ISBN 978-1-922879-08-0 
November 2023 

Ownership of intellectual property rights in this publication 

Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is 
owned by the Commonwealth of Australia (referred to below as the Commonwealth). 

Disclaimer 

The material contained in this publication is made available on the understanding that the Commonwealth is 
not providing professional advice, and that users exercise their own skill and care with respect to its use, and 
seek independent advice if necessary. 

The Commonwealth makes no representations or warranties as to the contents or accuracy of the 
information contained in this publication. To the extent permitted by law, the Commonwealth disclaims 
liability to any person or organisation in respect of anything done, or omitted to be done, in reliance upon 
information contained in this publication. 

Use of the Coat of Arms 

The Department of the Prime Minister and Cabinet sets the terms under which the Coat of Arms is used. 
Please refer to the Commonwealth Coat of Arms - Information and Guidelines publication available at 
http://www.pmc.gov.au. 

An appropriate citation for this report is: 

Bureau of Infrastructure and Transport Research Economics (BITRE) 2023. The economics of road 
maintenance. Research Report 156, Canberra, ACT. 

Contact us 

This publication is available in PDF format. All other rights are reserved, including in relation to any 
departmental logos or trademarks which may exist. For enquiries regarding the licence and any use of this 
publication, please contact 

Bureau of Infrastructure and Transport Research Economics 
Department of Infrastructure, Transport, Cities, Regional Development, Communications and the Arts 
GPO Box 594, Canberra ACT 2601, Australia 
 
E-mail bitre@infrastructure.gov.au 
Internet www.bitre.gov.au   

http://www.pmc.gov.au/
mailto:bitre@infrastructure.gov.au
http://www.bitre.gov.au/


 

iii 
 

Foreword 
Australian governments, Commonwealth, state, territory and local, spend some $30 billion per annum on the 
maintenance, upgrade and expansion of Australia’s 875,000-kilometre road network. Maintenance 
expenditure is estimated to be of the order of 20 to 40 per cent of total road expenditure. This report 
develops analytical approaches to help ensure that road expenditure is used in the most efficient and cost-
effective manner both in terms of dividing funds between construction and maintenance and allocation of 
maintenance funds between locations, treatment types and treatment timing. 

The report focuses on the impact of timely and adequate maintenance expenditure on the overall costs to 
society — that is, costs to road agencies, road users and externalities. The analytical approach and case 
studies demonstrate the potential costs of delayed or deferred maintenance expenditure, which can result in 
much higher overall costs, reinforcing the adage: ‘a stitch in time save nine’. The report also provides a 
computer modelling approach to optimising road maintenance expenditure over time so as to minimise the 
overall cost to society, without and with constraints on road agency spending levels. 

The report was authored by Dr Mark Harvey, who undertook the modelling and analysis. BITRE also 
acknowledges the input and assistance of the Australian Road Research Board (ARRB) in providing technical 
advice and curating the road network data set used in the case studies presented. BITRE is grateful to the 
Australian state government transport agency that provided the data for the case study. 
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At a glance 

• This report discusses the economics of road maintenance, using a framework that optimises the 
trade-off between road agency maintenance costs and costs to road users. More frequent and more 
intense maintenance treatments keep a road in better condition, which reduces costs to road users, 
but at a higher cost to road agencies. 

• For every road segment, there is a large number of possible future maintenance options involving a 
range of potential different treatment types, intensities and implementation times. Consequently, 
optimising maintenance can involve assessing a huge number of options, and is only feasible using a 
computer model.  

• The computer model must forecast costs under each option and compare them to determine the 
optimum maintenance program. Models need to account for pavement deterioration, maintenance 
treatment costs, impacts of treatments on pavement condition, and road users’ costs. Data is 
required on road condition, traffic volumes, maintenance treatment characteristics, environmental 
conditions and calibration coefficients to predict deterioration. 

• BITRE developed its own model and approach to road maintenance optimisation, which includes 
capacity to optimise road user and agency costs within road agency budget constraints. 

• A case study was undertaken using a database of 2034 road segments with a total length of 1977 
kilometres drawn from the non-urban parts of seven different highways, supplied by an Australian 
state government road agency. 

• Road agency maintenance spending is usually constrained by annual government funding 
allocations. The theoretical approach and BITRE model incorporate budget constraints expressed 
either as present values of road agency spending or as annual spending levels. Annual budget 
constraints act to smooth out forecast spending needs over time. 

• The theoretical approach posits marginal benefit–cost ratios (MBCRs) that show the social value of 
increasing spending when it is constrained. As budget constraints are tightened, MBCRs rise slowly at 
first, then rapidly escalate. In the case of annual budget constraints, the model is able to estimate an 
MBCR for each individual year.  

• Tight annual budget constraints in the early years of the analysis period can cause the present value 
of road agency costs to be higher than without the constraints due to the need for higher catch-up 
spending in later years. This reflects the principle of ‘a stitch in time saves nine’. 

• Significantly, MBCRs for maintenance, estimated via the modelling process in the report, are 
comparable with BCRs for capital investment projects. Such comparisons can inform decisions about 
the value of shifting funds between capital and maintenance budgets. 

• The report also considers ways to measure the extent of underfunding of maintenance. Unless a 
road network is in very good condition at the start of the analysis period, an optimisation model is 
likely to identify a substantial ‘backlog’ of maintenance works that it recommends should be 
undertaken in the first year. The size the backlog is not a good measure of the maintenance deficit 
because a significant part of it is not urgent. Maintenance deficits are better measured by comparing 
actual current or forecast spending with a ‘sustainable’ or average annual forecast level of spending 
for a number of years into the future estimated from a model. 

• Last, the report introduces the concept of ‘equivalent interest rate for deferred maintenance’ 
(EIRDM). Saving on maintenance funding in the short term in exchange for spending more in later 
years to repair the damage done is like borrowing money that has to be repaid later. Working out the 
implicit interest rate for the loan shows it can be very expensive way to borrow, with interest rates of 
20% to 30% in the examples considered. The EIRDM is a way to convey to decision makers the costs 
of large-scale deferral of maintenance spending.  
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Executive summary 

Aims and scope of report (Chapter 1) 

Australian governments, Commonwealth, state, territory and local, spend approximately $30 billion per 
annum on the maintenance, upgrade and expansion of Australia’s 875,000-kilometre road network. 
Maintenance expenditure is estimated to be of the order of 20% to 40% of total road expenditure. There 
appears to be a worldwide tendency to underfund road maintenance relative to construction, attributable to 
financial pressures on governments combined with lower visibility to the public of maintenance spending 
compared to construction projects. Maintenance works are much smaller in size than construction and 
underspending only becomes noticeable to road users when pavement condition reaches an advanced state 
of disrepair (high roughness and rutting, potholes), by which time restoration costs have risen dramatically.  

The report 

• reviews the economics of road maintenance 

• develops an approach for assessing maintenance needs at a strategic level 

• tests the methodology with a case study 

• suggests how the methodology could be applied to the national road network in Australia, and 

• contributes to understanding the relative merits of maintenance and capital spending. 

Maintenance can be defined as “all the technical and associated administrative functions intended to retain 
an item or system in, or restore it to, a state in which it can perform its required function” (Dekker 1996, 
p. 230). In common with most of the literature on road maintenance optimisation, this report focuses on 
periodic maintenance, which covers larger tasks undertaken at intervals of several years or more. Routine 
maintenance, that is, small tasks undertaken frequently, are usually costed using simple costs per lane-
kilometre of road or per square metre of pavement. Only maintenance of flexible pavements (that is, 
pavements comprising layers of crushed rock with a waterproof seal) is considered in the report but the same 
broad principles apply to concrete pavements, bridges and other structures. 

Decisions about periodic road maintenance involve choosing between alternative treatment types that can be 
applied with different intensities and at different times. If funds are scarce, a decision to treat one location 
can come at the expense of not treating another location. Road maintenance optimisation models seek to 
support decision making about maintenance by recommending a maintenance plan that will minimise or 
maximise an objective function usually subject to budget, resource and technical constraints. With its 
economic focus, the present report, concentrates on minimising the present value of costs to society as the 
objective function. 

Elements of road maintenance optimisation models (Chapter 2) 

In road maintenance optimisation models, costs to road users are typically assumed to be a function of 
pavement roughness. Other important dimensions of pavement condition include cracking, pavement 
strength, rut depth, potholing and skid resistance. The primary drivers of increasing pavement roughness are 
the passing of time, climate, pavement strength and axle loads. Cracking has a significant effect on the rate of 
increase of pavement roughness because cracks in the bitumen seal allow moisture to penetrate the surface 
causing loss of pavement strength and faster deterioration.  

Cracking can be prevented with resurfacing treatments applied when the bitumen oxidises and starts to 
become brittle. A thin resurfacing treatment, while protecting against cracking, will not reduce roughness or 
increase pavement strength. A thicker overlay with corrective work on pavement defects will reduce 
roughness and add strength. A rehabilitation treatment, that is, replacing or reworking the surface and one or 
more of the upper layers of the base or applying a thick overlay, will reset pavement condition parameters to 
the levels of a new pavement.  
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Pavement roughness affects user costs by reducing driver comfort, vehicle speeds and safety, and increasing 
fuel consumption and wear and tear on vehicles and tyres.  

Principles of road maintenance economics (Chapter 3) 

Cost minimisation approach 

The economic principles that apply to road maintenance differ in some significant ways from capital 
investments. Economic appraisal of capital investments is undertaken via cost–benefit analysis wherein the 
benefits and costs to society from a project are estimated in comparison with the situation where the project 
is not implemented. The situation without the project is called the ‘base case’. It is often described as 
business-as-usual or do-minimum. Several alternative options for a project may be assessed with cost–benefit 
analysis undertaken for each option in order to identify the best, that is, the option with the highest present 
value of benefits minus costs. For road maintenance, an option assessed has to involve a series of treatments 
over time because the economic worth of a single maintenance treatment in isolation will be affected by the 
timing and types of future treatments. Since there is a very large number of possible treatment type, intensity 
and timing combinations to choose between, the number of potential options is huge. Furthermore, there is 
arbitrariness in choosing which option to make the base case. The do-minimum option with routine 
maintenance only will eventually lead to the road deteriorating to the point where it becomes impassable. 
The base case therefore needs to involve some periodic maintenance treatments. The choice of the base case 
will affect net benefits. 

Another important difference between road maintenance and capital investment is that, while capital 
investment is assessed with aim of maximising benefits minus costs, maintenance can be treated as a cost 
minimisation problem. The reason is that, over the relevant range of road conditions, individual maintenance 
treatments have negligible effect on demand levels because people base their travel decision on whole-of-trip 
costs. Most trips will comprise travel over many road segments with pavements at different stages of their life 
cycles. There is therefore no need to consider benefits associated with induced traffic. It is only a matter of 
balancing cost savings to existing traffic from better road condition against the maintenance costs of the road 
agency. The optimisation problem from the point of view of society is to minimise the present value of total 
transport costs (PVTTC), defined as the sum of the present value of road user costs (PVUC), which may include 
safety and externalities, and the present value of road agency costs (PVAC). 

More frequent and more intense maintenance treatments keep the road in better condition, which reduces 
costs to road users, but there are diminishing returns as more maintenance is undertaken. A graph could be 
constructed as in Figure 1 showing PVUC as function of PVAC, falling (at a decreasing rate) as PVAC is 
increased. PVAC as a function of itself is a 45-degree line. Adding the PVUC curve and the PVAC line together 
creates a U-shaped PVTTC curve. The optimum set of treatment types, intensities and timings from an 
economic efficiency point of view occurs where the sum of present values of costs to road users and the road 
agency, that is, PVTTC, is at a minimum. 

Introducing budget constraints 

For capital projects in the presence of a budget constraint, project selection to maximise net benefits is 
achieved by ranking the projects in descending order of benefit–cost ratio (BCR). As discussed, such an 
approach does not transfer well to maintenance because of the huge number of options and lack of an 
obvious choice of base case. For maintenance, this report proposes a ‘marginal benefit–cost ratio’ (MBCR) 
defined as the saving in PVUC (benefit) from increasing PVAC (cost) by an additional dollar. 
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Figure 0.1 Maintenance optimums 

 

At the optimum point in Figure 1, where PVTTC is at a minimum, the MBCR is one because there is no net gain 
from spending more. Introducing budget constraints into the optimisation model saves road agency costs at 
the expense of road users and raises the MBCR for additional spending (in other words, relaxing the budget 
constraint) above one. In Figure 1, setting a budget constraint expressed as a maximum allowable value for 
PVAC below the optimum, would locate a point on the PVTTC curve north-west of the optimum point. The 
MBCR at a point on the curve is negative the slope of the curve plus one. If the slope of the PVTTC curve at the 
constrained optimum point was in Figure 1 was –1.0, the MBCR would be 2.0. For large changes in 
maintenance spending, an incremental BCR can be calculated as the ratio of the saving in PVUC to the 
increase in PVAC. 

Maintenance backlog and annual budget constraints 

Unless the road network is in very good condition at the start of the analysis period, with no budget constraint 
or with a budget constraint expressed as a present value, economically optimal maintenance spending is likely 
to be very high in the first year of the analysis period. Much of this ‘backlog’ consists of maintenance works 
that were economically warranted in the past but not undertaken. After the first year, economically optimal 
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spending levels of maintenance for a network can fluctuate widely from year to year. Imposition of annual 
budget constraints in a model smooths spending over time, which may be needed to fit within financial and 
resource constraints. 

Annual budget constraints on agency spending are more difficult to model than present value constraints but 
enable estimation of MBCRs for individual years. An annual MBCR for a given year is the present value of the 
user cost saving from spending an additional dollar of present value on maintenance in the given year. 

MBCRs for maintenance can be an informative way to express the value of increasing maintenance spending 
and they have the advantage that they can be compared with BCRs for capital projects. The most 
economically efficient allocation of funds between maintenance and capital spending occurs where the MBCR 
for maintenance is the same as the cut-off BCR for capital projects. 

Cost-effectiveness analysis approach 

A common alternative approach is to minimise PVAC subject to minimum road condition constraints. This is a 
form of cost-effectiveness analysis because it seeks to find the least-cost way to achieve the objective of 
maintaining roads to the specified minimum standards. Annual budget constraints can be imposed to smooth 
and defer road agency spending albeit at the expense of a higher PVAC value. Setting the minimum road 
condition objectives exogenously will lead to a less economically efficient outcome compared to PVTTC 
minimisation. 

Optimal pavement strength 

A more general economic optimisation approach is to optimise pavement strength together with 
maintenance spending. It is shown that, if maintenance spending is more constrained than capital spending 
and funds cannot be shifted between the maintenance and capital budgets, the ‘second best’ optimum is to 
use some of the capital funds to build stronger pavements than would otherwise be warranted. 

Optimal incentives in maintenance contracts 

Where maintenance is contracted out, an optimal maintenance outcome can be obtained with a 
performance-based contract in which the payment to the contractor varies negatively with road user costs. 

Maintenance optimisation modelling literature review (Chapter 4) 

There is large body of literature from the civil engineering discipline on road maintenance optimisation in 
which authors specify a problem and present one or more solution methodologies, usually with a case study. 
Most models in the literature are either deterministic with continuous pavement condition or probabilistic 
with discrete pavement condition, adopting a Markov chain approach.  

The number of possible solutions to road maintenance optimisation problems rises exponentially with the 
number of available treatment types, analysis years and road segments, which is known as the ‘curse of 
dimensionality’ or ‘combinatorial explosion’. Each case study in the literature has to manage the curse of 
dimensionality by restricting the numbers of segments analysed together, treatment types and analysis years, 
and by applying a suitable optimisation method. 

Mathematical optimisation techniques such as linear, integer and dynamic programming are able to find 
optimum solutions provided the number of possible solutions is not too great. Heuristic optimisation 
algorithms, such as genetic algorithms, have extended the size of problems that can be accommodated. They 
can handle discrete problems and undertake random searches to find different local minimums. They can find 
good solutions but not necessarily the overall optimum solution. Their effectiveness declines for extremely 
large problems.  
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Two-stage approaches have been developed in which the best solution, or a number of best solutions, is 
found for each segment in isolation without any budget constraints in the first stage. In the second stage, a 
prioritisation approach is employed to choose a set of solutions, from among the first-stage solutions, that fits 
within annual budget constraints. However, prioritisation approaches are not guaranteed to find overall 
optimum solutions. 

Case study without annual budget constraints (Chapter 5) 

A case study was undertaken using a database of 2034 segments of road with a total length of 
1977 kilometres drawn from the non-urban parts of seven different highways supplied by an Australian state 
government road agency. 

BITRE developed a maintenance model with a simplified World Road Association (PIARC) Highway 
Development and Management Model 4 (HDM-4) pavement deterioration algorithm. The optimisation 
approach involved full enumeration of all possible solutions subject to a minimum time interval between 
treatments. With three periodic maintenance treatment types, a minimum of eight years between treatments 
and a 40-year analysis period, there were 581,485 solution options for each segment. For the first 20 years, 
economically optimal spending for periodic (excluding routine) maintenance for the whole network was 
estimated at $1505 million, an average annual amount of $75 million. About 37% of the network by length 
would be rehabilitated over the 20 years. First-year optimal spending was estimated at $186 million, well 
above the annual average, suggesting a substantial maintenance backlog. 

The case study data was then used to illustrate the cost–effectiveness approach of minimising the present 
value of road agency costs (PVAC) subject to minimum standard constraints in the form of maximum 
permitted roughness levels. The maximum roughness level constraint declined with traffic level and the 
number of heavy vehicles, patterning the relationship between traffic and economically optimal road 
standard. Compared with the economically optimal PVTTC-minimising solution, 20-year spending could be 
lowered by 18% by halving the amount of the rehabilitation work by road length in the first 10 years. 
However, road roughness was higher on average, imposing additional costs on road users. Each dollar of PVAC 
saved, on average, cost users $2.30 compared with the PVTTC-minimising economic optimum. 

The unconstrained PVTTC-minimising result implies a marginal benefit–cost ratio (MBCR) of one. Optimising 
subject to budget constraints expressed as present values is not computationally difficult if a target MBCR 
above one is specified first and adjusted to give the desired PVAC value. Results were estimated for MBCRs 
ranging from 1.5 to 25. Increasing the MBCR pushes road agency maintenance spending into the future as 
well as reducing it in total. The upward adjustment to the MBCR to save each additional increment of PVAC is 
at first gentle as the model initially delays non-urgent treatments. But the rise soon becomes extremely steep 
as the model is forced to delay much-needed maintenance treatments. 

A number of sensitivity tests were undertaken. Raising the discount rate reduced optimal agency spending 
deferring maintenance activities further into the future. Failing to include safety in user costs reduced 
recommended maintenance spending. If computer run times for the model need to be reduced, the 
sensitivity tests showed that it is better to retain the longer 40-year analysis period and skip some years in the 
later part of the period (that is, not to test options with treatments in the skipped years) than to shorten the 
analysis period to 30 or 20 years. 

Case study with annual budget constraints (Chapter 6) 

Optimising maintenance subject to annual budget constraints requires all segments to be considered 
together. A four-stage optimisation approach was developed for the case study. 

 Full enumeration of options for all segments (already discussed) 

 Elimination of options that could not possibly appear in an optimal solution because there is a better 
option — that is, elimination of ‘dominated’ options 
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 Selection of the option for each segment that minimises the objective function (PVTTC or PVAC) plus the 
road agency spending in each year having a budget-constraint times a ‘penalty factor’. A higher penalty 
factor for a given year discourages selection of options with treatments in that year. The penalty factors 
are adjusted so that the budget constraints are just met. 

 Adjustment of the solution by allowing an ‘industrial strength’ genetic algorithm to select from the 
available options to minimise the objective function subject to the budget constraints. 

Provided the penalty factors are the lowest possible to achieve the solution, MBCRs can be calculated for each 
year from the penalty factor for the particular year. 

Case study results with annual budget constraints for the first 10 years and the first 20 years showed that 

• the required penalty factors and hence MBCRs were highest for the first year when the demand for funds 
was greatest and declined thereafter 

• a substantial proportion of the year-one maintenance backlog could be deferred at little cost provided 
there was optimal selection of the deferred treatments 

• penalty factors, and hence MBCRs, needed to increase at an increasing rate as annual budget constraints 
were tightened 

• as constraints were tightened, PVAC fell at first, and then rose as the costs in later years of repairing the 
pavements neglected during the early years began to predominate. 

In summary, short deferrals of economically warranted maintenance works can be achieved at little cost with 
economically optimal selection of the treatments to defer, but costs to society can rise rapidly if deferral is 
extended. After a point, even agency costs rise in present value terms. 

A simple triaging method for maintenance treatments using only a penalty factor for year one, was 
demonstrated to work satisfactorily for modest year-one budget constraints, but not for tight constraints. 

Measuring maintenance deficits 

The first-year spending backlog is not a good measure of the maintenance deficit because a significant part of 
it is not urgent. Maintenance deficits are better measured by comparing actual current or forecast spending 
with a ‘sustainable’ or average annual forecast level of spending for a number of years into the future 
estimated from a model. A ‘sustainable level’ of spending can be defined as one where the jump in spending 
just following the constrained period is not large, or the jump is not so large that it cannot be caught up by 
continued spending at the sustainable level in subsequent years. Annual MBCRs can also be used to gauge the 
maintenance deficit, offering a measure directly comparable with the value of capital spending. 

The ‘equivalent interest rate for deferred maintenance’ is proposed as a way to convey to decision makers the 
costs of deferring maintenance spending. Saving on maintenance funding in the short term in exchange for 
spending more in later years to repair the damage done is like borrowing money that has to be repaid later. 
Working out the implicit interest rate for the loan shows it can be very expensive, with interest rates of 20% 
to 30% in the examples considered. 
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Report’s contributions (Chapter 7) 

The literature on road maintenance optimisation comes almost entirely out of the civil engineering discipline. 
While drawing heavily on the that literature, the present report was written from the perspective of the 
economics discipline. 

The particular contributions of this report are  

• explanation of the relevant road maintenance engineering concepts for non-experts 

• comprehensive review of the road maintenance optimisation literature 

• detailed discussion of road maintenance economics 

• examination of theoretical and practical issues in road maintenance modelling  

• development of the marginal and incremental BCR concepts to measure the economic value of road 
maintenance spending in a way that is comparable with BCRs for construction projects 

• development of a methodology for optimising road maintenance for large databases of road segments. 
The methodology forecasts future spending needs, without or with budget constraints. Budget constraints 
can be expressed as present values or annual amounts. Marginal and incremental BCRs can be estimated 
using the methodology 

• identification of data needs for modelling 

• discussion of ways to simplify the methodology and reduce computer run times 

• discussion of ways to estimate and communicate the size of road maintenance deficits. 

The report should raise awareness of the importance of road maintenance, improve understanding of the 
economics of road maintenance and encourage and inform future optimisation modelling including collection 
of the necessary data. 
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1. Introduction 
Maintenance stops infrastructure from falling into disrepair or restores infrastructure already in disrepair 
avoiding inconvenience and higher costs to users. Poorly maintained roads can affect vehicle operating costs 
and travel times, travel time reliability and safety for users. If deterioration goes too far, people will be 
reluctant to use the road with the attendant losses of the economic and social benefits the road confers. 
Under-maintaining can end up costing the road agency more in the long term because the costs of restoring 
the road can be much greater than the maintenance costs saved. According to Roth (2006, p. 4), delays in 
maintenance can double or triple the cost of subsequent road repair and reconstruction. 

Underfunding of road maintenance appears to be a worldwide problem that has persisted for many years 
(Carnahan 1988, p. 307). Referring to developing and transition economies, Heggie and Vickers (1998, p. 42) 
stated that budget allocations for maintenance often fall below 50% of requirements. Maintenance funding in 
seven Asian countries was found to meet only 25% of national requirements (Donnges et al. 2007; World 
Road Association 2014, p. 14). Infrastructure Australia (IA 2016, p. 80) reported that “there is an 
infrastructure maintenance deficit in Australia” but was unable to estimate the size. 

The absence of cost recovery arrangements to raise funds for road maintenance directly from users has been 
suggested as a cause of the maintenance backlog (Heggie 1995, p. 19; IA 2016, p.83 & 2019, p. 228). Being 
funded from general revenue, maintenance spending, in common with other government-funded activities, is 
subject to pressures to restrict government spending, borrowing, and taxation. Also, maintenance tends to be 
underfunded relative to new construction because normal preventative maintenance activities lack visibility 
to the public (Heggie 1995, p.24) and underspending in any year has only an incremental impact on asset 
condition (IA 2016, p 80). Road users have limited awareness of variations in pavement condition until it 
reaches an advanced state of disrepair, by which time restoration costs have risen dramatically. 

1.1 Report objectives and scope 

The report’s objectives are to 

• review the economic principles of road maintenance including the timing, form and quantity of 
maintenance 

• identify an effective approach for assessing current and future spending gaps in road maintenance at a 
strategic level 

• undertake a case study to develop and test the identified methodology 

• suggest directions for a comprehensive assessment of maintenance requirements for the national road 
network, and 

• contribute to understanding the relative merits of expenditure on maintenance of existing infrastructure 
and investment in new infrastructure. 

Mathematical optimisation modelling plays a major role in estimating future maintenance needs. The 
maintenance optimisation problem is, in essence, to find the optimum balance between the costs and 
benefits of maintenance, while considering various constraints (Dekker 1996, p. 231). For each road segment 
in a network, choices have to be made between alternative treatment types and the times to implement 
those treatments. Where maintenance funds are limited, there is an additional problem of balancing the 
competing needs of the different pieces of road. 

This report addresses only sealed roads with flexible pavements. They carry most vehicle-kilometres and 
account for most maintenance expenditure in Australia. Sealed roads with flexible pavements consist of layers 
of crushed rock with either a chip seal (a thin layer of bitumen and aggregate), which keeps out water, or an 
asphaltic concrete seal (aggregate mixed with a bitumen binder), which both keeps out water and adds 
structural strength. The term ‘flexible pavement’ refers to the fact that the pavements can deform when loads 
are applied and then return to their original shape.  
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Rigid or concrete pavements are relatively rare and relatively new, while gravel pavements are only 
economically warranted for low-trafficked roads. The report also does not address maintenance of bridges, 
tunnels, geotechnical structures, and roadside equipment. However, there are similarities between 
maintenance principles for different types of road infrastructure. For example, Liu et al. (1997) and Morcous 
and Lounis (2005) applied the same maintenance optimisation techniques to bridges and Grivas et al. (1993) 
to concrete pavements, that other authors apply to flexible pavements. 

In contrast to the modelling for a single road pavement type that features in this report, Yeo et al. (2013, 
p. 318) referred to maintenance models that apply to ‘heterogeneous systems’ in which the ‘facilities’ can be 
of different types with different materials, deterioration processes and environmental factors. Examples are 
models that consider together both road segments with flexible and rigid pavements or both pavements and 
bridges. 

1.2 The nature of road maintenance 

Maintenance can be defined as “all the technical and associated administrative functions intended to retain 
an item or system in, or restore it to, a state in which it can perform its required function” (Dekker 1996, 
p. 230). It does not upgrade the asset. In practice, it is common to carry out minor upgrades of roads such as 
widening or shoulder sealing together with rehabilitations. 

Road maintenance can be categorised as 

• Routine: small tasks undertaken frequently — vegetation control, repairing or replacing signs and other 
roadside furniture, clearing drains and culverts, repainting line markings, patching, crack sealing and 
pothole repair 

• Periodic: larger tasks undertaken at intervals of several years or more — resealing, resurfacing, overlay, 
reconstruction, and 

• Urgent: unforeseen repairs requiring immediate attention — collapsed culverts, washaways, landslides 
that block roads (Burningham and Stankevich 2005, p. 2). 

Optimisation models focus on periodic maintenance and sometimes also on components of routine 
maintenance that are related to roughness or the rate of pavement deterioration, in particular, crack sealing, 
patching and pothole repair. Road providers have considerable scope to vary the types and timing of periodic 
maintenance interventions. Routine maintenance, on the other hand, comprises tasks that need to be carried 
out if a road is to remain open to traffic and generally do not vary with traffic volume and composition. For 
costing purposes, routine maintenance activities that do not need to be optimised are usually assumed to be 
a constant amount per lane-kilometre of road or per square metre of pavement. 

1.3 Maintenance optimisation 

The focus of the present report is road maintenance economics, which is interpreted as decision making about 
maintenance activities that takes account of scarcity of resources from an economy-wide perspective. The 
relative scarcity of different types of resources at different times is gauged by market-determined prices or 
costs, which measure the value (willingness to pay) people place on the resources. Hence costs of inputs to 
maintenance activities such as labour, materials, fuel and equipment need to be balanced against impacts on 
road users’ vehicle operating costs, travel time and safety. Some types of resource costs relevant to road 
maintenance economics have no market prices, namely, crashes and environmental externalities such as air 
and water pollution and greenhouse gases. However, transport project appraisal guidelines publish monetary 
values for these, for example, ATAP (2016). 

Given resource costs, road maintenance optimisation models seek to identify the set of maintenance 
treatments and times at which to implement them that will achieve the best result in terms of one or more 
objectives within whatever constraints are imposed. Models are applied to one or more homogeneous 
lengths of road (segments) over a specified analysis period or planning horizon. The model has a menu of 
treatment types (or maintenance actions) to choose from with each treatment type having a cost and an 
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impact on pavement condition. Input data includes the characteristics of the road segment or segments at the 
start of the analysis period. There has to be a sub-model that will forecast pavement deterioration in the 
absence of treatment. An optimisation technique is applied to find the solution. 

Echoing the famous quote by the statistician George Box, “all models are wrong but some are useful,” Ferreira 
et al. (2002a, p. 569) warned that models, by definition, do not fully capture reality. The term ‘optimum’ 
applies only to models. The optimum decisions indicated by models should help policy makers make better 
decisions. They support, but do not replace, the planning process and exercise of expert judgement. 

One of the earliest models for maintenance optimisation, Golabi et al. (1982), was reported to have led to 
major cost savings. Golabi et al. (1982) developed a pavement management system for the State of Arizona to 
produce optimal maintenance policies for each mile of the 7,400-mile network of highways. During the first 
year of operation, 1980-81, the system was estimated to have saved $14 million, almost a third of Arizona’s 
maintenance budget, and was forecast to save a further $101 million over the next four years. Two reasons 
for the cost reduction were identified.  

“First, traditionally, the roads had been allowed to deteriorate to a rather poor condition 
before any preservation action was taken. The roads then required substantial and costly 
corrective measures. The actions recommended by the Pavement Management System are 
mostly preventive measures; that is, it recommends less substantial measures before the road 
deteriorates to a really poor condition. Analysis shows that less substantial but slightly more 
frequent measures not only keep the roads in good condition most of the time, but are overall 
less costly; they prevent the road from reaching really bad conditions that require much 
costlier corrective measures. 

Second, in the past, the corrective actions taken were too conservative; it was common to 
resurface a road with five inches of asphalt or concrete. The assumption was that the thicker 
the asphalt layer, the longer it would take for the road to deteriorate below acceptable 
standards. While this assumption is correct, the time it takes for a road to deteriorate is not 
proportional to the asphalt layer. For example, the prediction model shows that there is no 
significant difference between the rate of deterioration of a road resurfaced with three inches 
of asphalt concrete and a road resurfaced with five inches. The policies recommended by PMS 
[pavement management system] therefore are less conservative; for example, a 
recommendation of three inches of overlay is rather rare and is reserved for the worst 
conditions.” Golabi et al. (1982, pp. 16-7) 

This suggests that the lessons learned from early efforts at road maintenance optimisation modelling have 
radically changed the way road agencies maintain their pavements. However, there is no confirmation from 
other sources. The maintenance optimisation literature is concerned with improving modelling techniques 
rather than assessing the practical value of maintenance modelling. 

1.4 Project methodology 

The theoretical approach in this report builds on and completes earlier BITRE research into optimising road 
funding including in a working paper prepared for an International Transport Forum Roundtable on 
Sustainable Road Funding (Harvey 2012). The working paper featured a survey of the literature on 
maintenance optimisation modelling and suggested ways to measure underspending on maintenance. 
Material from the working paper has been incorporated into the present report. Related work on road 
economics was published in Harvey (2015). 

A case study was undertaken to test the ideas in this report and many valuable lessons were learned in the 
process. A database of 2034 segments of national network and state arterial roads was supplied by an 
Australian state government road agency. BITRE engaged the Australian Road Research Board (ARRB) to 
process the raw data into a form suitable for maintenance modelling, and then to estimate spending needs 
under several budget scenarios using the World Road Association (PIARC) Highway Development and 
Management Model 4 (HDM-4). BITRE then developed its own maintenance model with simplified HDM-4 
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pavement deterioration algorithms and ARRB’s calibration factors. The flexibility and transparency of the in-
house BITRE model made it possible to conduct a wide range of experiments. 

The model was initially developed as an Excel spreadsheet with Visual Basic macros and subsequently recoded 
in Mathematica to speed up processing. 

In the literature, genetic optimisation algorithms are often employed for road maintenance problems of this 
type. BITRE used Evolver genetic optimisation software, which links to Excel. BITRE found the genetic 
algorithm approach unsatisfactory when faced with an extremely large number of choices. For finding the 
best solution in the absence of budget constraints, BITRE used full enumeration of treatment options 
undertaken in Mathematica. For the more difficult subsequent task of optimising subject to annual budget 
constraints, a multi-stage approach was developed. 

1.5 Structure of the report 

The report is structured as follows. 

• Chapter 2 introduces the technical concepts and terminology referred throughout the rest of the report, 
as well as the physical and economic relationships that go into maintenance modelling. 

• Chapter 3 discusses the principles of road maintenance economics and introduces concepts such as the 
marginal and incremental benefit–cost ratios. 

• Chapter 4 provides a literature review summarising the range of approaches taken by academic authors 
to optimise road maintenance. 

• Chapter 5 presents the optimisation methodology developed for this report and the case study using 
actual road data for optimisation in absence of annual budget constraints. 

• Chapter 6 continues the discussion and case study with the added complication of annual budget 
constraints. 

• Chapter 7 summarises the lessons learned. 
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2. Elements of road maintenance optimisation models 

Summary 

The road maintenance optimisation problem from the point of view of society involves trading off road 
agency or maintenance costs against road user costs over time. Three essential elements of a model designed 
to optimise the trade-off are  

• prediction of future pavement condition (deterioration) 

• prediction of the effects of specified maintenance treatments on road condition and road agency costs, 
and 

• estimation of road user costs as a function of roughness. 

Pavement condition: Roughness is the main dimension of pavement condition that affects road users and so is 
central to modelling road maintenance. Other dimensions of pavement condition featuring in models include 
cracking, pavement strength, rut depth, potholing and skid resistance. 

In the deterioration model within the World Road Association (PIARC) Highway Development and 
Management Model 4 (HDM-4), based on Patterson (1987), the main drivers of roughness increase are time, 
climate, pavement strength and axle loads. Cracking plays a major role in roughness increase because cracks 
in the bitumen seal allow moisture to penetrate the surface causing loss of pavement strength and faster 
deterioration.  

Effects of maintenance treatments: Cracking can be prevented with resurfacing treatments applied when the 
bitumen oxidises and starts to become brittle. A thin resurfacing treatment, while restoring the surface, will 
not reduce roughness or increase pavement strength. A thicker overlay with corrective work on pavement 
defects will do so. A rehabilitation treatment, that is, replacing or reworking the surface and one or more of 
the upper layers of the base or applying a thick overlay, will reset pavement condition parameters to the 
levels of a new pavement. 

Road user costs: Pavement roughness affects user costs by reducing driver comfort and vehicle speeds, and 
increasing fuel consumption (and hence emissions) and wear and tear on vehicles and tyres. Roughness, 
rutting and skid resistance affect safety. In models requiring a simple user cost relationship, user costs are 
typically made a linear or quadratic function of roughness. The user cost model used in the case study later in 
the report makes fuel consumption, emissions, vehicle wear and tear, and safety costs a function of 
roughness. Speed is assumed not to be affected over the relevant range of road roughness and values of 
willingness-to-pay for driver comfort are not available. 

2.1 Introduction 

The topic of road maintenance economics straddles the civil engineering and economics disciplines. 
Application of economic principles to road maintenance requires some understanding of the technical aspects 
of road maintenance. This chapter explains the technical terminology and the relationships that underpin the 
discussion in the rest of the report. The first topic addressed is the dimensions of road condition and how they 
are measured. Road engineers will already be familiar with the material, but others may not. Three important 
components of maintenance optimisation models are the covered — prediction of how pavements will 
deteriorate, how different maintenance treatments improve road condition, and how road condition affects 
user costs. In the terminology of the HDM-4 model, these are respectively road deterioration, works effects, 
and road user effects. Along the way, the discussion introduces the pavement deterioration model and road 
user costs relationship used in the BITRE model developed to undertake the case study presented in 
Chapters 5 and 6 of the report. 
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2.2 Road segmentation and data 

For management and modelling purposes, roads are divided into ‘segments’ or ‘sections’ that are assumed to 
have homogeneous characteristics. Segment length in databases can be uniform, for example, road condition 
measurements taken at 50 or 100 metre intervals, or variable. In the case study database, segments ranged in 
length from 15 metres to 18 kilometres, with an average of just under 1.0 kilometre. Data required for each 
segment for maintenance modelling includes 

• traffic levels and growth rates for vehicles of different types 

• road pavement characteristics such as pavement type, age and width 

• condition data as discussed in the next section, and 

• factors that affect pavement deterioration such as the environment or climate. 

Although road segments are meant to be homogeneous, a certain amount of averaging of road condition over 
each segment is inevitable. If segments are too long with too much variation in road condition, optimal 
treatments based on average road condition for each segment may be inadequate for the worst parts of 
sections and wastefully over-treat the better parts. However, because of the set-up costs and delays to road 
users, short lengths of pavement in need of maintenance are unlikely to be treated without also treating less 
‘needy’ contiguous and nearby lengths of pavement. Models rarely allow for such interdependencies. 

2.3 Road condition measurement 

The most important quantifiable attributes of road condition for strategic-level maintenance modelling are 

• roughness, measured in metres per kilometre of international roughness index (IRI) 

• cracking, measured as the percentage of area cracked 

• rutting, measured as mean rut depth in millimetres, and 

• pavement strength, measured as adjusted structural number. 

2.3.1 Roughness 

Roughness measures the ride quality of a pavement, that is, the relative comfort offered to road users. It 
relates to surface irregularities with wavelengths between 0.5 and 50 metres in the longitudinal profiles of 
either or both wheelpaths in a traffic lane. In the past, measurements were taken from the physical 
movement of a car’s rear axle relative to its body as the vehicle travels along the road at a constant speed. 
The distances moved upward and downward by the axle were summed (absolute values, so downward does 
not offset upward) to obtain the international roughness index (IRI) in metres of vertical displacement over a 
kilometre travelled. Current practice is to measure the longitudinal profile of the road and to mathematically 
model the response of a hypothetical vehicle. Australian practice is to build into the definition a travel speed 
of 80 km/h and to take the average of the two wheelpaths of a lane (Austroads 2018). 

2.3.2 Cracking 

As defined in Austroads (2018, p.49), “a crack is an unplanned break or discontinuity in the integrity of the 
pavement surface, usually a narrow fracture or partial fracture”. Cracking does not of itself add to roughness 
because the crack openings are narrow and easily bridged by the tyre. However, cracks allow ingress of water, 
which weakens pavements causing accelerated deterioration. There are different types of cracking, for 
example, linear (transverse of longitudinal), interconnected (crocodile or block), irregular (meandering, 
diagonal, crescent) and edge cracking, with varying spacing between them. The extent of cracking is measured 
by the percentage of surface area cracked, which can be estimated from visual inspection or automated 
methods involving digital cameras with image processing software. 

2.3.3 Rutting 

From Austroads (2018, p. 10), “a rut is defined as a longitudinal depression that forms in the wheelpath of a 
road. The length-to-width ratio would normally be greater than 4:1. Rutting may occur in one or both 
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wheelpaths of a road.” Rut depth is measured in millimetres as the maximum vertical displacement in the 
transverse profile. Rut depth alone does not give rise to roughness if the depth is uniform. It is the variation of 
rut depth that affects roughness. Hence, it is the standard deviation of the longitudinal profile of rut depth 
that appears as a contributor to road roughness in the HDM-4 deterioration model (Paterson 1987, p. 287). 
Rutting can be a road safety concern because, in wet weather, water ‘ponds’ in the ruts with potential loss of 
skid resistance for vehicles at high speeds. The presence of rutting can indicate inadequate pavement 
strength. (Austroads 2018, p.11). 

2.3.4 Pavement strength 

Pavement strength refers to the ability to carry repeated heavy axle loadings before the pavement shows 
unacceptable signs of structural and surface distress that seriously compromise its function (Austroads 2018, 
p. 21). For pavement deterioration prediction purposes, pavement strength is measured by structural 
number. It is a measure of the total thickness of the road pavement with each layer given a weight according 
to its strength, in other words, a linear combination of the layer strength coefficients and thicknesses of the 
individual layers above the subgrade (Morosiuk et al. 2004). The adjusted structural number (SNP) takes into 
account the contribution to pavement strength of the subgrade (the soil and rock beneath the pavement).1 
Pavement strength can be estimated from the size and shape of the depression of a pavement’s surface (the 
‘deflection bowl’) caused by a standard load, typically 40 or 50 kilo-newtons of downward force. 

2.3.5 Other 

Potholes are the most visible and severe form of pavement distress. They can cause tyre blowout, damage to 
wheels and suspension systems, and significantly reduce vehicle speeds and safety (Paterson 1987, p. 230). 
Potholes develop from wide cracks or ravelling (loss of surface material). 

Skid resistance is addressed below in the section on safety impacts on road users. 

Many road maintenance models use composite indexes of road condition that combine two or more 
condition indicators into a single measure of pavement quality such as the ‘pavement condition index’ (PCI) or 
a subjective measure such as the ‘present serviceability rating’ (or index) (PSR or PSI).2 

2.4 Pavement deterioration modelling 

Pavement age, climate, pavement strength, and axle loads all affect deterioration of pavement condition. 
Paterson’s (1987, p. 289) incremental model of pavement deterioration is presented here to illustrate how 
these drivers of pavement deterioration contribute. Paterson’s model is the basis of the deterioration model 
in HDM-4, a simplified version of which was used in the case study model in this report. 

Under traditional approaches, pavement deterioration relationships can be classified as mechanistic, 
empirical or a combination of both. Empirical models are based on statistical (usually regression) analysis of 
locally-observed deterioration trends. They require extensive historical data and may not be transferrable to 
other locations where conditions are different (Khan et al. 2012, p. 7; Morosiuk et al. 2004, p.A2-1). The 
mechanistic approach relies on theory (stress, strain and deflection) to model deterioration trends. Such 
models use a large number of variables relating to material properties, environmental conditions, geometric 
elements and loading characteristics (Khan et al. 2012, p. 7). They are more easily transferable to different 

---------- 
1 Throughout this report, the HDM-4 term ‘adjusted structural number’ (SNP) is used rather than the term used in earlier versions of 

the HDM model and Paterson (1987) of ‘modified structural number’ (SNC). 
2 The pavement condition index (PCI) ranges from from zero (worst) to 100 (best). It is calculated as 100 minus a weighted sum of 

scores for different types of distress (surface defects, surface deformations and cracking) assigned by an inspector. The present 
serviceability rating (PSR) is a subjective scale ranging from 5 (excellent) to 0 (essentially impassable). It is the mean of the 
individual ratings made by a panel of experts (Carey and Irick 1960, p. 42). Through regression analysis, relationships have been 
developed to predict PSR from physical measurements of road condition. Since the PSR is based on passenger interpretations of 
ride quality, it generally reflects road roughness because roughness largely determines ride quality. According to Paterson (1986, 
p. 56), the relationship between PSR and the international roughness index is 𝑃𝑆𝑅 = 5𝑒−0.18 𝐼𝑅𝐼 . 
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pavements and conditions than empirical models, but are usually very data-intensive. To overcome the 
drawbacks of both types of model, Paterson (1987) adopted a combined mechanistic–empirical approach for 
the HDM-III model. This involved identifying the functional form and primary variables that affect each form 
of pavement deterioration from both theoretical and empirical information and then using various statistical 
techniques to calibrate it (Morosiuk et al. 2004, p. A2-1). Such models have moderate data requirements and 
can be transferred to different pavements and conditions with changed calibration parameters. 

Machine learning and neural network models are now being used to predict pavement deterioration (Justo-
Silva et al. 2021; Shtayat et al. 2022). These are applications of artificial intelligence. Being a recent 
development, it remains to be seen how they can be integrated into maintenance optimisation models. 

2.4.1 Roughness 

Paterson’s (1987, p. 289) incremental model for predicting the annual change in roughness is shown in 
equation 2.1. ‘Incremental models’ predict the change in pavement condition over a period of time, usually a 
year, in contrast to ‘aggregate models’ that predict condition level at a point in time.3 The change in 
roughness is given by 

 ∆𝑅𝐼𝑡 = 134 𝑒𝑚𝑡𝑆𝑁𝑃𝐾−5.0 ∆𝑁𝐸4 + 0.114 ∆𝑅𝐷𝑆 + 0.0066 ∆𝐶𝑅𝑋
+ 0.010 ∆𝑃𝐴𝑇 + 𝑍𝑝𝑜𝑡 + 0.023 𝑅𝐼𝑡 ∆𝑡 

(2.1) 

where 

• ∆RIt = increase in roughness over time period t (m/km IRI) 

• m = environmental coefficient, higher in wetter areas, set at 0.023 in Paterson (1987) 

• t = age of pavement or overlay (years) 

• SNP = adjusted structural number of pavement strength 

• SNPK = adjusted structural number reduced for cracking = 1 + SNP – 0.000758 H CRX where 

o  H is the thickness of the cracked layer (mm), and 
o  CRX is the area of cracking (%) 

• ∆NE4 = incremental number of equivalent standard axle loads in period ∆t 

• ∆RDS = increase in rut depth standard deviation of both wheelpaths (mm) 

• ∆CRX = increase in indexed area of cracking (%) 

• ∆PAT = increase in area of surface patching (%) 

• Zpot = dummy intercepts estimated for sections with potholing 

• RIt = roughness at time t (m/km IRI) 

• ∆t = incremental time period of analysis (years) 

In summary, the total change in roughness during a time period equals the sum of changes in roughness due 
to 

• structural deformation (the first two terms) 

o a function of pavement strength, axle loads during the period, the environmental coefficient, and the 
increase in variation in rut depth during the period, 

• surface defects (the third, fourth and fifth terms) 

---------- 
3 An example of an aggregate model is 𝑅(𝑡) = [𝑅0 + 725 (𝑆𝑁𝑃 + 1)−4.99 𝑁𝐸4(𝑡)] 𝑒𝑚𝑡, which is suitable for pavements that are 

structurally designed for their traffic loadings and well maintained (Paterson 1987, p. 304). An incremental model has the 
advantage over an aggregate model that it can start from any point and so is more easily fitted to measured pavement data. 
Paterson and Attoh-Okine (1992, p. 104) published a modified version of the aggregate algorithm for pavements that do not have 
extensive distress data. The modified equation should be applied only to pavements that are maintained at low cracking levels 

(<30% of area). The modified equation is 𝑅(𝑡) = [𝑅0 + 263 (𝑆𝑁𝑃 + 1)−5𝑁𝐸4(𝑡)] 1.04 𝑒𝑚𝑡. 
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o a function of the increases during the period of cracking, patch repairs that protrude above or below 
the surrounding surface, and open potholes, and 

• age and environmental factors (the last term) 

o a function of the environmental coefficient multiplied by the length of the time period, ∆t. 

Structural deformation results from plastic deformation (that is, non-reversible changes of shape in response 
to applied forces) in the pavement materials under the shear stresses imposed by traffic loading. It includes 
the effects of environmental factors on material strength and rutting behaviour under loads. 

While cracking by itself does not add to roughness, the cracking term in the model, 0.0066 ∆CRX, arises from 
the local or ‘birdbath’ depressions that often develop in a cracked area and also the effects of wide or spalled 
cracks, the precursor of a pothole (Paterson 1987, p. 288; Morosiuk 2004, p. B10-3). 

The indirect effects of cracking are serious. The bitumen surface functions as waterproofing. Cracking affects 
pavement strength because it allows water ingress that decreases the shear strength of granular pavement 
layers, which will increase deformation when the pavement is over-stressed. The rate of increase depends on 
material quality, the amount of water ingress (cracking and rainfall) and traffic loading (Morosiuk 2004, 
pp. B3-1 and B8-3). The model takes account of the effect of cracking on pavement strength by adjusting SNP 
downward to arrive at SNPK. 

That potholes add to roughness needs no explanation. Patches add to roughness where they protrude. If the 
patching is performed to a high standard, the effect on roughness will be negligible (Watanatada 1987, 
p. 115). Effects of protruding patches are omitted altogether in the HDM-4 model. 

Environmental factors, represented by the final term of Paterson’s incremental model, influence roughness 
through non-structural effects, primarily temperature and moisture fluctuations but also foundation 
movements such as subsidence (Paterson 1987, p. 288). 

Figure 2.1 illustrates the pavement deterioration model developed for our case study, which is a simplified 
version of the HDM-4 deterioration model with the addition of a relationship between pavement age and 
strength discussed below.  

Figure 2.1 Pavement deterioration model in case study model based on HDM-4 
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Note that the figure describes the relationships within a model. It does not purport to represent the complete 
range of physical relationships. The roughness increase in a single year is the sum of roughness increases from 
four processes — cracking, pavement strength decline, potholing and rutting — plus an environmental 
component dependent on climate and pavement age.  

The changes in pavement strength, cracking, rutting and potholing in the incremental roughness model are 
each determined by sub-models. Figure 2.1 also shows the main data inputs affecting each process. 

2.4.2 Pavement strength 

Strength for a newly constructed or rehabilitated pavement gradually deteriorates over time and with axle 
loadings. Our case study model used the relationship in equation 2.2 reported by Martin and Choummanivong 
(2018, p. 14) obtained from data collected at long-term pavement performance (LTPP) monitoring sites. 

 𝑆𝑁𝑃𝑡 = 𝑆𝑁𝑃0 [2 − 𝑒𝑥𝑝 (0.0000441333 𝑇𝑀𝐼 +
0.2581

𝑆𝐿
𝑡)] (2.2) 

where 

• SNPt = average ‘in service’ adjusted structural number at age t 

• SNP0 = average ‘as-built’ adjusted structure number 

• t = age in years since construction or the last rehabilitation 

• TMI = Thornthwaite Moisture Index, a measure of moisture deficit or surplus 

• SL = service life, which for arterial roads is typically 60 years. (ARRB 2015, p. 20).4 

Martin and Choummanivong were unable to obtain a relationship with both pavement age and cumulative 
axle loadings, probably because of the high level of multicollinearlity between them. 

Pavement strength is also reduced each year by an amount related to the extent of cracking, given by  
–0.000758 H CRX, which affects SNPK in equation 2.1. In our model, H was set equal to 45. 

2.4.3 Cracking 

Age-related cracking remains at practically zero for a number of years until oxidisation of the bituminous 
binder reduces flexibility. In HDM-4, there is a ‘crack initiation’ phase for the first several years of the life of a 
surface during which cracking stays below 0.5% of the surface area. The length of the crack initiation phase in 
years depends on a calibration coefficient, traffic loading (equivalent standard axles), pavement strength and 
pavement type. Once the surface starts to become brittle, models assume that the percentage of the road 
surface cracked follows an S-curve, accelerating up to around 50%, then slowing as it approaches 100%. The 
shape of the S-curve varies with the calibration coefficient and pavement type. 

2.4.4 Rutting 

In the rutting sub-model of HDM-4, for a newly constructed pavement, there is a phase of ‘initial 
densification’ or ‘post-construction compaction’ that occurs after it is opened to traffic. Afterward, the annual 
increase in rutting depends on a calibration coefficient, pavement strength, equivalent standard axle loads 
and, after cracking commences, the level of cracking and rainfall (mean monthly precipitation). 

---------- 
4 For estimating year-by-year progression of pavement strength decline, our case study model used the incremental form of 

equation 2.2, ∆𝑆𝑁𝑃𝑡 = 𝑒𝑥𝑝(0.000044133 𝑇𝑀𝐼 + 0.2581 𝑆𝐿⁄ ) ∙ (𝑆𝑁𝑃𝑡 − 2𝑆𝑁𝑃0) ∙ ∆𝑡. Letting ∆t equal one, the incremental 
equation gives the change in pavement strength over a year from the initial value of SNPt at the start of the year. 
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2.4.5 Potholing 

In HDM-4, the annual increase in the number of pothole units (of area 0.1 m2) depends on a calibration 
coefficient, the levels of wide cracking and ravelling, the number of axles per lane, rainfall and inversely with 
the thickness of the bituminous surfacing. The rate at which potholes are patched plays a major role in both 
pothole progression and the impact of potholes on roughness.  

2.4.6 Effect of not resurfacing 

With cracking impacting negatively on all the other processes in the model shown in Figure 2.1, the 
implication is that pavement deterioration proceeds at a higher rate following crack initiation when cracking 
begins to progress up the S-curve. The optimum time for a reseal or resurface is likely to be around the time 
of crack initiation. To illustrate the point, Figure 2.2 was created by running two scenarios in our case study 
model set up for a surface treatment (sprayed seal) pavement with average traffic and other characteristics in 
the case study database. In the scenario shown with the green lines, a resurfacing was carried out every 
12 years, the length of time to crack initiation, so that cracking never rose above 0.5%. In the scenario shown 
with the blue lines, no resurfacings were undertaken and cracking was allowed to progress almost to 100%, a 
point reached after 35 years. The effects on pavement strength, rutting and roughness are clear. Note that 
the diagram is illustrative only. The model has been extrapolated well beyond the technical constraints 
normally imposed and realistic values for roughness and pavement strength. 

Figure 2.2 Pavement deterioration with (green lines) and without (blue lines) regular resurfacing 

 

2.5 Maintenance treatments 

Maintenance treatments improve the levels of one or more dimensions of road condition. The characteristics 
of maintenance treatments will vary by location and the practices of the particular road agency. For modelling 
purposes, a number of treatment types may be specified. For each treatment type, the model needs to 
predict the effect on pavement condition. To estimate the cost of the treatment to the road agency, a cost 
per square metre of pavement treated is required. The cost per square metre may vary with the intensity with 
which the treatment is applied, for example, thicker overlays cost more, and the cost may vary with the 
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condition of the pavement at the time of the treatment — a road in worse condition typically requires a more 
intense treatment. 

Resurfacing treatments involve application of thin surfacings such as a layer of aggregate (gravel or crushed 
rock) and sprayed bitumen, or a thin layer of asphalt. They fill minor cracks, restore skid resistance, and 
protect the surface from aging. In a model, the time to crack initiation is reset to zero following a resurfacing 
treatment, but there is little or no impact on pavement strength, roughness and rutting. When combined with 
‘shape correction’, that is, repair of surface defects and a thicker surfacing, there can be a major improvement 
in roughness and rutting. 

Overlay or rehabilitation treatments involve replacing or reworking the surface and one or more of the upper 
layers of the base. Reconstruction replaces all the base layers down to the subgrade. Reconstruction 
effectively creates a new pavement with only the subgrade strength unchanged. (Morosiuk 2004, p. B13-13). 
Rehabilitation creates a new pavement as far as roughness and rutting are concerned, but the effect on 
pavement strength will vary with the thickness and characteristics of the overlay. Even the highest quality 
new asphalt surface will not have a roughness below 1 m/km IRI. Typical average roughness levels for new 
construction range between 1 and 2 m/km IRI and can be as high as 2.5 m/km IRI (Morosiuk 2004, p. B13-25). 

Figure 2.3 illustrates the saw-tooth curve of roughness change over time in cycles of deterioration and 
restoration. In the diagram, rehabilitations fully restore roughness all the way to the level of a new pavement 
and between each rehabilitation, overlays with shape correction are applied reducing roughness part of the 
way to the new pavement level. 

Figure 2.3 Illustrative saw-tooth curve of pavement deterioration and restoration 

 

2.6 Road user and other societal costs 

In models that optimise from the point of view of society, maintenance costs are traded-off against road user 
costs, that is, greater spending on maintenance can be justified by savings in user costs from pavements in 
better condition. Categories of user costs include, time, vehicle operation, comfort, safety and delays during 
maintenance. 

2.6.1 Time and vehicle operating costs 

Roughness affects road user costs in several ways. It can reduce vehicle speeds as drivers respond to 
decreased ride comfort and it causes wear and tear on tyres and vehicle suspension systems. Greater rolling 
resistance increases fuel consumption given speed. 

There is no doubt that, above some critical level, roughness will reduce vehicle speeds but, due to the wide 
variations in research results, it is unclear what those critical levels are for cars and trucks (3 to 6 m/km IRI in 
the sources surveyed) nor the extent to which speed falls with roughness (McLean and Foley 1998, Opus 
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1999, Kalembo 2012, Parkman 2012, Yu and Lu 2014). At the upper end, Paterson and Watanatada (1985) 
found that travel speed is relatively insensitive to roughness at levels below 6 m/km IRI. 

Where relationships have been found, the speed reduction is almost negligible over the relevant range (see 
the literature surveys in Parkman 2012, p.23 and Yu and Lu 2014). Yu and Lu (2014) found that average 
vehicle speed decreases linearly with the increase of IRI at a rate of –0.84 km/h per 1 m/km IRI. Parkman 
(2012, p. 178) assumed linear speed reductions of –0.59, –0.68 and –0.76 km/h for cars, light commercial 
vehicles and heavy commercial vehicles respectively, for each additional m/km of IRI for a study of the 
impacts of reduced maintenance spending in Scotland.5 

For optimisation modelling, the relationship between roughness and road user cost is typically assumed to be 
either linear (for example, Li and Madanat 2002) or quadratic (for example, Ferreira and Queiroz 2012). 

For the case study in the present report, the vehicle operating cost relationships for a number of vehicle types 
in the Australian Transport Assessment and Planning Guidelines (ATAP 2016) were used. ATAP conservatively 
assumes there is no relationship between roughness and vehicle speed over the relevant range of pavement 
roughness. The cost relationship arises from increases in fuel consumption and wear and tear on tyres and 
suspension systems. The relationships are quadratic with respect to roughness but the coefficient for the IRI-
squared term is small compared to the coefficient for the IRI term so the relationship is close to linear. The 
percentage increases in vehicle operating costs (excluding time) due to roughness for the ATAP (2016) 
relationship over the range 1.5 to 6 m/km IRI are around 3% per IRI unit for medium-sized cars and between 
6% and 8% per IRI unit for articulated trucks. By way of comparison, McLean and Foley (1998) stated that 
research up to that time suggested that over the range from 1.5 to 6.5 m/km IRI, road user costs excluding 
time rise by 4.5% for cars and 5% for articulated trucks per IRI unit. 

Figure 2.4 shows the first derivatives of the user cost functions in the case study model for the five vehicle 
types and for safety on divided and undivided roads (discussed below). For cost minimisation, only the first 
derivative matters, not the absolute value of the function. In the case study model, the constants in the 
vehicle cost functions were set so the costs would be zero at a roughness of 1.2 m/km IRI (the assumed level 
for a newly rehabilitated pavement).6,7 

2.6.2 Safety 

Safety is another significant source of maintenance-related costs for road users. The relationship between 
safety and road condition is not often included in maintenance optimisation modelling. The literature survey 
in Austroads (2008) covers relationships between crash occurrence and skid resistance, microtexture, 
macrotexture, rutting and roughness. Pavement texture relates to wavelengths in the surface profile that are 
less than 50mm, much shorter than for roughness for which the wavelengths range from 0.5 to 50 metres.8 In 
HDM-4, skid resistance deteriorates over time with traffic. The relationship between skid resistance and 
crashes is well established but studies vary in whether they consider all crashes, wet-road crashes or wet road 
skidding crashes. Cenek et al. (2012) found a statistically significant relationship in New Zealand data between 
skid resistance and crash risk. 

---------- 
5  Based on an earlier study by Cooper (1980), Parkman (2012, p. 178) assumed that vehicles travelling on roads with IRI of 5 m/km or more have 

reduced vehicle speeds of 2 km/h for cars, 2.3 km/h for light goods vehicles and 2.63 km/h for heavy goods vehicles. The change in speed was 
made to vary linearly between these amounts at 5 m/km IRI and zero for a 3m longitudinal profile variance (LPV) of 0.5 mm2. The latter converts to 
1.6 m/km IRI using the conversion equation LPV = 0.2117 IRI1.8507 from Alonso and Yanguas (2001). 

6 Similarly, Tsunokawa and Schofer (1994, p. 155), who assumed a linear user cost function with respect to roughness, did not 
specify a value for the constant term, noting that it was unnecessary. 

7  The coefficients for the model are: 𝑢𝑠𝑒𝑟 𝑐𝑜𝑠𝑡 ($ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒⁄ 𝑘𝑚) = 𝑎 𝑅 + 𝑏 𝑅2 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
 Car Light/med rigid truck Heavy rigid truck Articulated truck Combination truck 

a 0.007802 0.019169 0.051871 0.086938 0.109023 

b 0.00027 0.000889 0.000146 0.000371 0.000175 

 
8 Wavelength ranges for the different road surface characteristics are: micro-texture — less than 0.5mm; macro-texture — from 

0.5mm to 50mm; mega-texture — from 50mm to 500mm; and roughness — from 0.5m to 50m. Austroads (2007, p. 34) 
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Studies of the relationship between roughness and crash risk invariably find positive correlations (Austroads 
2008; Chan et al. 2009; Tehrani et al. 2017; Mamlouk et al. 2018; Lee et al. 2020). Reasons include that the 
contact area between tyres and the pavement decreases when pavement roughness increases, leading to 
lower brake friction, and diminishing the available lateral forces needed for controlling and steering vehicles 
(Chan et al. 2009, p.269; Tehrani et al. 2017, p.260). While slower vehicle speeds caused by roughness might 
be expected to reduce crash numbers and severities, drivers tend not to reduce speeds sufficiently on rougher 
roads. 

Figure 2.4 Rates of change in user costs as functions of roughness 
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For our case study model, the relationship derived by regression analysis in Cenek et al. (2012) was used. It is 
a cubic function of road roughness.9 The relationship, valid for roughness levels above 2 m/km IRI, declines 
slightly to reach a minimum at 2.471 m/km IRI and then increases. For our case study model, the Cenek et al. 
relationship was combined with crash rates from Austroads (2010) and unit costs of crashes from ATAP 
(2016). Presumably, the decline in crashes between 2.0 and 2.471 m/km IRI occurs because there is less skid 
resistance or there is a greater tendency to drive faster on smoother pavements. Since the safety relationship 
was not estimated for roughness values below 2.0 m/km IRI, the value was held constant at the level for 
2.0 m/km IRI for lower roughness values.10 This is consistent with Mamlouk et al. (2018), who found that crash 
rate is not greatly affected by roughness at low levels and estimated ‘critical values’ at which crashes start to 
increase in the range 2.4 to 4.3 m/km IRI in different U.S. states and across different time periods. 

Rutting is a safety concern in wet weather when water accumulates in ruts (‘ponding’) increasing the risk of 
hydroplaning crashes. Cenek et al. (2012) found no statistically significant relationship between rut depth and 
crash rate and noted that they were unable to find any other studies that address the effect of rutting on 
crash risk. Austroads (2008), Chan et al. (2009) and Tehrani et al. (2017) similarly found little or no 
relationship. Mamlouk et al. (2018) was an exception but only above rut depths of 8.9 to 10mm. 

Potholing can affect safety when drivers swerve to avoid potholes.  

For maintenance optimisation modelling, a simpler alternative to specifying relationships between skid 
resistance, roughness, rut depth, potholing and crash costs is to set minimum tolerable standards that apply 
regardless of economic considerations. Once the standard falls below the minimum, a treatment is triggered. 
For example, in Toole et al. (2006), meeting minimum skid resistance standards was a major driver of 
surfacing treatments. 

2.6.3 Other user costs 

Other user-related impacts of road maintenance are greenhouse gas emissions, ride comfort and delays to 
traffic while maintenance works are carried out.  

For the case study in this report, the fuel consumption model in ATAP (2016) was used to derive a relationship 
between roughness and the cost of additional CO2 equivalent emissions. The costs of greenhouse gas 
emissions added approximately one per cent to vehicle operating costs per additional IRI unit. Parkman (2012) 
found the impact of changes in maintenance spending on carbon dioxide emissions to be extremely small 
because of the offsetting additional emissions from the maintenance works and associated vehicle delays. 

No values are available for users’ willingness to pay for the greater comfort of travelling on smoother roads. 
Willingness-to-pay values to avoid discomfort due to roughness could be obtained using contingent valuation 
or stated preference survey methods, but it would be challenging to convey to survey respondents the feeling 
of driving on roads with specified roughness levels. Having them drive on lengths of road with different 
roughness levels would make the survey expensive to run. Moreover, correlations between roughness, 
vehicle operating costs, safety, and comfort would make it difficult to separately enumerate the value of 
discomfort. 

Costs of delays to road users while maintenance activities are carried out can be significant. For local roads in 
Scotland, Parkman (2012, p. 64) estimated traffic delay costs to be around 25% of the level of costs of the 
associated maintenance works in the base case. In urban areas with high traffic levels, the need to minimise 
traffic delay costs affects the type of pavement laid and the times at which the works can be carried out, 
which adds to treatment costs. In maintenance optimisation models, these costs can be added to treatment 

---------- 
9  The crash rate was assumed to be proportional to 𝐸𝑥𝑝[−10.54 ∗ 𝐿𝑜𝑔10𝑅 + 19.219 ∗ (𝐿𝑜𝑔10𝑅)2 − 9.85 ∗ (𝐿𝑜𝑔10𝑅)3] from Cenek 

et al. (2012, p. 30) where R is roughness in m/km IRI. In fitting the relationship to Australian crash data, it was assumed that the 
published casualty crash rate for undivided roads applied at a roughness of 2.5 m/km IRI and for divided roads at 2.0 m/km IRI. 

10  The safety cost relationships used in the model in $ per vehicle-km were: for undivided roads 0.643134 ∗ 𝐸𝑥𝑝[−10.54 ∗
𝐿𝑜𝑔10𝑅 + 19.219 ∗ (𝐿𝑜𝑔10𝑅)2 − 9.85 ∗ (𝐿𝑜𝑔10𝑅)3] − 0.109356 and for divided roads 0.280396 ∗ 𝐸𝑥𝑝[−10.54 ∗ 𝐿𝑜𝑔10𝑅 +
19.219 ∗ (𝐿𝑜𝑔10𝑅)2 − 9.85 ∗ (𝐿𝑜𝑔10𝑅)3] − 0.047678. The constants were set so the functions would be zero at the minimum 
value of 2.471 m/km IRI. 
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costs, reducing the optimal level of maintenance expenditure in the same way as would an increase in the 
costs of maintenance works. However, they are part of road user costs, not agency costs. The case study 
model undertaken for this report did not allow for costs due to maintenance works. 

2.6.4 Additivity of user cost relationships 

The user cost function for our case study was obtained by adding functions for costs of vehicle operation, CO2 
emissions and safety as functions of road roughness. It would be possible to add on functions for time costs 
based on a roughness–vehicle speed relationship and for road user comfort as a function of roughness based 
on a willingness-to-pay, if satisfactory relationships were available. However, adding together relationships 
estimated independently can double count road user costs because of inter-relationships between different 
cost elements. For example, if drivers reduce speeds on rougher roads, the increased time cost will be offset 
by lower crash risk, wear and tear on the vehicle, and user discomfort. Caution is therefore needed when 
combining user cost relationships from different sources. 

2.7 Conclusion 

This chapter has introduced the technical concepts and terminology needed to understand the rest of the 
report. The chapter also outlined the main technical relationships that underpin the economic models of the 
succeeding chapters under the headings of pavement deterioration, maintenance treatments and road user 
costs. 

Pavement deterioration models of the type discussed in this chapter require calibration to local conditions 
before they can be applied to actual roads. But even if well calibrated, they can at best give results that are 
correct on average within a wide probability distribution. The literature review in Chapter 4 shows that much 
road maintenance modelling is undertaken using probabilistic models. In some cases, treatment effectiveness 
is modelled as a probabilistic variable as well as pavement deterioration.  

Road user costs are never treated as probabilistic, but the literature review just presented shows that there is 
a range of research findings and limited knowledge about the impacts of road roughness on users. The 
relationship between roughness and user costs is an area where more research is needed. 
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3. Principles of road maintenance economics 

Summary 

Economic optimisation of road maintenance from the point of view of society can be treated as a cost 
minimisation problem rather than welfare maximisation problem. The optimisation problem is then to 
minimise the present value of total transport costs (PVTTC), which is the sum of the present value of road user 
costs (PVUC) and the present value of road agency costs (PVAC). 

More frequent and more expensive maintenance treatments keep the road in better condition, which reduces 
costs to road users, but at a higher cost to the road agency. The decreasing cost relationship for users and the 
increasing cost relationship for the road agency as more maintenance is undertaken can be summed to obtain 
a U-shaped PVTTC curve. The set of treatment types, intensities and timings at the minimum point on the 
curve is the optimum maintenance policy. 

A road agency budget constraint can be specified as a maximum allowable PVAC value. This leads to a 
constrained solution at a point on the U-shaped PVTTC curve to the north-west the minimum point. 

The marginal benefit–cost ratio (MBCR) is the saving in PVUC (benefit) from increasing PVAC (cost) by an 
additional dollar. At the optimum point, where PVTTC is at a minimum, the slope of the curve is zero and the 
MBCR is one. Moving leftward along the curve as the budget constraint is tightened raises the MBCR above 
one. 

For large changes in maintenance spending, an incremental BCR can be calculated as the ratio of the saving in 
PVUC to the increase in PVAC. 

With no budget constraint or a present value budget constraint, optimal maintenance spending is likely to be 
very high in the first year of the analysis period and can fluctuate widely over subsequent years. Imposition of 
annual budget constraints, by smoothing spending over time, can lead to a more realistic future spending 
profile. An annual MBCR for a given year is the benefit from spending an additional dollar on maintenance in 
that year. 

MBCRs for maintenance can be useful for assessing the value of increasing maintenance spending and they 
can be compared with BCRs for capital projects. 

A cost-effectiveness analysis approach commonly applied is to minimise PVAC subject to maximum roughness 
constraints. Setting the maximum allowable road roughness exogenously will almost certainly lead to a less 
economically efficient outcome compared to PVTTC minimisation, which allows the analysis to determine the 
optimal maintenance standards. Present value budget constraints are not relevant but annual budget 
constraints can be imposed to smooth and defer road agency spending albeit at the expense of a higher PVAC 
value. 

The theoretical discussion assumes PVTTC is minimised over an infinite period. In models, a residual value or 
depreciation amount can be included at the end of a finite analysis period to approximate the effect of having 
an infinite time horizon. 

A more general optimisation approach is to optimise pavement strength and maintenance spending together, 
adjusting the trade-off between pavement strength and maintenance costs to minimise the sum of PVTTC for 
maintenance and construction costs. 

Where maintenance is contracted out, an optimal maintenance outcome can be obtained with a 
performance-based contract in which the payment to the contractor varies negatively with road user costs. 
The costs incurred by users of roads with different roughness levels are thereby internalised to the supplier. 
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3.1 Introduction 

The application of economics of road maintenance gives rise to a number of complexities. Periodic 
maintenance treatments are discrete actions that occur many years apart and the economically optimal 
timing for each individual treatment cannot be determined in isolation from the timing of future treatments. 
Then there are different treatment types and intensities of treatments to choose from, and technical and 
budget constraints. 

For the purposes of comparing the desirability of spending on maintenance with spending on capital 
investments, it would be useful to be able to estimate benefit–cost ratios (BCRs) for maintenance as is done in 
cost–benefit analyses (CBAs) of investment projects. But with a large number of possible treatment timing 
and type combinations to choose from and arbitrariness in choosing the do-minimum base case, it is not 
straightforward to define a BCR for maintenance. It is inadequate to consider a single maintenance treatment 
in isolation because its value is affected by the timing and types of future treatments. Approaches are 
developed in this chapter for obtaining ‘marginal’ and ‘incremental’ BCRs for spending on maintenance from 
the optimisation process. 

The chapter opens by considering the relationship between the welfare maximisation objective of CBA and 
the cost minimisation objective of maintenance. Then, using a simple model with a single periodic 
maintenance treatment type, it is shown how the optimum treatment time and maintenance standard can be 
determined, without and with budget constraints. Ways to define BCRs for maintenance spending are 
introduced in the context of the simple model. The cost-effectiveness analysis approach, minimising road 
agency costs subject to maximum roughness constraints is discussed, including imposition of annual budget 
constraints. Some complications in maintenance optimisation are then addressed, namely the effect of a finite 
analysis period and multiple treatment types. 

Finally, two additional topics addressed using the models and concepts developed — optimising the 
investment-maintenance trade-off and optimal incentives in maintenance contracts. These last two topics are 
discussed only at a theoretical level and are not pursued further in the report. 

3.2 Welfare maximisation versus cost minimisation 

For economic analyses of road pricing and investment decisions, the optimisation problem is expressed in 
terms of welfare maximisation. Economic welfare derived from a road is equal to users’ willingness-to-pay 
(WTP), the area under the demand curve for the quantity demanded, minus total social costs. Total social 
costs comprise road users’ costs, external costs and the road agency’s investment and maintenance costs. All 
costs should be valued at the opportunity cost of the resources consumed.11  

For maintenance optimisation modelling, it is usual to assume the absence of a relationship between road 
condition and the traffic level including the vehicle mix (the proportions of the different types of cars and 
trucks). In effect, the demand curve for use of a road segment is assumed to be vertical over the relevant 
range of changes in user costs. This assumption greatly simplifies the economics of road maintenance because 
the benefits to additional road users do not have to be considered. The net welfare gain from an 
improvement in road condition is simply the resource cost saving to existing users minus the additional 
resource cost to the road agency and to any other members of society (external costs). 

With no change in traffic, WTP becomes a constant and can therefore be omitted from the optimisation 
problem. The optimisation problem of maximising WTP minus the sum of road user, road agency and external 
costs, simplifies to minimising the sum of road user, road agency and external costs. In HDM-4 terminology, 

---------- 
11  The term ‘opportunity cost’ refers to the benefit that would accrue from using a resource in its next best alternative use. ‘Resource 

cost’, also termed ‘social cost’ is the opportunity cost of resources used, measured from the point of view of society. Differences 
between private and resource costs arise when, for a given cost, the opportunities forgone are different for the individual 
incurring the cost and for society. Taxes, subsidies, tariffs, import quotas, unpriced externalities and non-competitive pricing by 
producers can cause resource costs to differ from private costs (ATAP 2022, p 16). 
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the sum of user, road agency and external costs is called Total Transport Costs (TTC) — terminology used 
throughout this report.  

For short lengths of road considered in isolation, the assumption of a fixed traffic level and vehicle type mix, is 
usually realistic except for very high roughness levels. Road users base their demand decisions on their 
generalised cost for an entire trip. Most trips will comprise travel over many road segments with pavements 
at different stages of their life cycles. Unless an individual segment is allowed to deteriorate to the point 
where it can damage vehicles or significantly reduce speeds, the condition of the short individual road 
segment, other things held equal, should have a negligible effect on demand for road usage on the segment. 

The cost minimisation approach avoids the need to specify a base case. For CBAs of investment projects, 
project options are always compared with a base case, usually business-as-usual or do-minimum. For 
maintenance, there are many alternatives to a given maintenance treatment at a given time — the same 
treatment can be implemented at other times and there are other treatment types and treatment intensities 
that can be undertaken at a range of possible times. It is possible to specify a do-minimum case against which 
to compare alternative scenarios of treatments and timings for same road segment. Indeed, the HDM-4 
model requires it. However, there is arbitrariness in selecting a do-minimum maintenance scenario. The do-
minimum option of carrying out routine maintenance only will eventually lead to the road deteriorating to the 
point where it becomes impassable. Some periodic maintenance treatments therefore need to be selected for 
the do-minimum case and there is a large range of alternatives. 

Introducing a base case into the optimisation problem does not affect the optimal result. The optimisation 
problem: minimise the present value of total transport costs (PVTTC), or ‘Minimise [PVTTC]’, is equivalent to 
‘Maximise [PVTTCBC – PVTTC]’ where PVTTCBC is the present value of total transport costs for a do-minimum 
base case and is a constant. 

3.3 Simplified example of the optimisation problem 

To illustrate the principles of road maintenance economics, we use here a simplified example in which there is 
just one maintenance treatment type, a major rehabilitation. 

Road user costs are treated as a function of time since the last rehabilitation, u(t). This function is a composite 
of road user costs as a function of roughness, u = u(R), and roughness as a function of time, R = R(t). 

In Figure 3.1, the continuous lines show road user costs, u(t), with rehabilitations carried out when user costs 
rise above a trigger level, u1. The first rehabilitation is carried out when the pavement is T0 years old, the 
second T1 years later, and so on. Each rehabilitation restores roughness to its initial level in the cycle. At time 
zero, the pavement is δ years old, where 0 ≤ δ ≤ T0. The road agency incurs rehabilitation costs in year T0 – δ, 
then again in year T1 + T0 – δ, and so on. 

The dashed lines in Figure 3.1 show the effect of delaying the time of the first rehabilitation by a small interval 
of time with no changes to the large intervals of time between the subsequent rehabilitations. During the year 
of the delay, immediately after time T0 – δ, users face additional costs equal to approximately (u1 + u2)/2. This 
additional cost to society is offset by a gain to the road agency from having rehabilitation costs in year T0 – δ 
and all future years delayed by the small time interval. There are also changes in future user costs, both 
positive and negative in individual years. The net change to economic welfare is the present value of 
combined road user and road agency costs with the delay minus the present value of combined road user and 
road agency costs without the delay. 

The optimum time to undertake the first rehabilitation can be found where the marginal cost of an additional 
year’s delay to users equals the marginal benefit to the road agency. The same rule can be applied to 
determine the optimum times for all future rehabilitations. 
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Figure 3.1 Effect on road user costs of delaying a rehabilitation 

 

To further simplify the model, it is assumed that traffic volume and the mix of vehicle types, which affect u(t), 
are constant over time and the rehabilitation cost, c, is the same for all maintenance cycles. Under these 
assumptions, the optimum time between rehabilitations, T, will be the same for all cycles. In the literature, 
this type of model is referred to as a ‘steady state’ model. 

The optimisation is done over an infinite time horizon. With continuous compounding, the present value of 
total transport cost for a cycle that commences with a rehabilitation is 

 
𝑃𝑉𝑇𝑇𝐶𝑐𝑦𝑐𝑙𝑒 = 𝑐 + ∫ 𝑢(𝑡) 𝑒−𝑟𝑡𝑑𝑡

𝑇

0

 (3.1) 

With continuous compounding, the present value of a monetary amount, a, paid at time zero and then 

forever afterwards at intervals of T years is 
𝑎

1−𝑒−𝑟𝑇. 

The PVTTC over an infinite time horizon for a pavement of age δ, in which all cycles are identical is 

 
𝑃𝑉𝑇𝑇𝐶 = ∫ 𝑢(𝑡 + 𝛿) 𝑒−𝑟𝑡𝑑𝑡

𝑇−𝛿

0

+ 𝑒−𝑟(𝑇−𝛿)
𝑃𝑉𝑇𝑇𝐶𝑐𝑦𝑐𝑙𝑒

(1 − 𝑒−𝑟𝑇)
 (3.2) 

The first term is the present value of user costs from year zero to year T – δ, the time of the first rehabilitation 
when the pavement reaches age T. The second term is the present value in year zero of rehabilitations every 
T years forever after starting in year T – δ, plus user costs between those rehabilitations. 

The optimum cycle time is determined by 

𝑑𝑃𝑉𝑇𝑇𝐶

𝑑𝑇
= 𝑢(𝑇) 𝑒−𝑟(𝑇−𝛿) − 𝑟 𝑒−𝑟(𝑇−𝛿)

 𝑃𝑉𝑇𝑇𝐶𝑐𝑦𝑐𝑙𝑒

(1 − 𝑒−𝑟𝑇)2
+ 𝑒−𝑟(𝑇−𝛿) 𝑢(𝑇) 𝑒−𝑟𝑇

(1 − 𝑒−𝑟𝑇)
 = 0 

which reduces to 

 𝑢(𝑇) = 𝑟
 𝑃𝑉𝑇𝑇𝐶𝑐𝑦𝑐𝑙𝑒

(1 − 𝑒−𝑟𝑇)
 (3.3) 

The optimum occurs where 

• the cost to users of extending cycle time by one year, u(T) (the shaded area in Figure 3.1 with the time 
delay set to one year), equals 

u2 

u1 

$ 

Time 

δ T0–δ T1+T0–δ T2+T1+T0–δ 
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• the benefit from delaying all future cycles by one year, given by the present value of total transport costs 

for future cycles, 
𝑃𝑉𝑇𝑇𝐶𝑐𝑦𝑐𝑙𝑒

(1−𝑒−𝑟𝑇)
, multiplied by the discount rate. Note that multiplying a resource cost by the 

discount rate gives the amount the resource cost would earn if invested elsewhere for one year. 

The initial pavement age, δ, is irrelevant to determining the optimum cycle time. Higher rehabilitation costs, c, 
will increase PVTTCcycle, requiring an increase in T to raise u(T) at the optimum. Thus, the more expensive it is 
to maintain roads, the lower will be the optimum standard of maintenance. Higher road user costs require an 
offsetting reduction in T in the optimum. Since road user costs consist of costs per vehicle times numbers of 
vehicles, higher traffic levels lead to higher values of u(T) and hence justify higher maintenance standards.  

Another way to view the problem is to separate PVTTC into the present value of costs to users (PVUC) and the 
present value of costs to the road agency (PVAC) as shown in equations 3.4 and 3.5.  

 𝑃𝑉𝑈𝐶 = ∫ 𝑢(𝑡 + 𝛿) 𝑒−𝑟𝑡 𝑑𝑡
𝑇−𝛿

0

+
𝑒−𝑟(𝑇−𝛿)

(1 − 𝑒−𝑟𝑇)
∫ 𝑢(𝑡) 𝑒−𝑟𝑡 𝑑𝑡

𝑇

0

 (3.4) 

 𝑃𝑉𝐴𝐶 =
𝑒−𝑟(𝑇−𝛿)

(1 − 𝑒−𝑟𝑇)
𝑐 (3.5) 

To illustrate these functions, a user cost curve as a function of time was fitted to outputs of the case study 
model for a one-kilometre length of road, with resurfacing undertaken at regular intervals as soon as cracking 
commences. Figures 3.2 and 3.3 show these curves and their sum, PVTTC = PVUC + PVAC, plotted against cycle 
time and PVAC respectively, with δ set to zero. 

Over the relevant range of roughness values, only a small proportion of road user costs varies with roughness 
so a plot of total user costs against roughness would appear very flat. Since that part of user costs unaffected 
by roughness is irrelevant to the model, user costs were set to zero at the roughness for a new pavement of 
1.2 m/km IRI. 

In Figure 3.2, as cycle time (T) increases, PVUC rises and PVAC falls. Summing the two curves gives a U-shaped 
PVTTC curve. The optimal cycle time occurs at the minimum point on the curve, in this case, at 40 years, with 
PVAC = $335,000, PVUC = $498,000 and PVTTC = $833,000.12 

Figure 3.3 presents the same relationships graphed against PVAC. Having PVAC on the horizontal axis instead 
of the time interval between treatments enables representation of maintenance options with different 
treatment types and time intervals between them. Cycle times below 18.2 years were omitted to avoid having 
to compress the scale of the vertical axis. PVAC plotted against itself is a 45-degree line. Moving to the right 
(spending more) implies a higher maintenance standard (shorter cycle times), the opposite of Figure 3.2. 

As is usually the case with optimisation problems of this type, the U-shaped total cost curve is fairly flat in the 
region of the optimum. Being out by a few years on either side of the optimum imposes only a small 
additional cost on society. For example, if rehabilitations were undertaken at 35-year intervals, PVTTC would 
increase by $20,000 and if rehabilitations were undertaken at 25-year intervals, PVTTC would increase by 
$22,000.13 However, if additional costs of this magnitude were incurred for a large number of kilometres of 
road, they could add up to a substantial amount. 

Increasing the discount rate from 4% to 7% raises the optimum time interval between rehabilitations from 40 
to 43.8 years. As a general rule, higher discount rates lead to lower optimal maintenance standards because 
they increase the gain from delaying maintenance spending. 

---------- 
12  User costs in dollars per annum were given by the polynomial 2000𝑡 − 100𝑡2 + 2.6𝑡3. The curve is a polynomial due to the safety 

component decreasing with roughness at low levels of roughness as discussed in Chapter 2, Section 2.6.2. The discount rate was 
set at 4%. Rehabilitation costs were set at $1,326,802. 

13  Li and Madanat (2002, p. 533) also reported that the “objective function is rather flat near the optimal solution” and that “the 
discounted life time cost [PVAC] is not very sensitive to cycle time”. 



THE ECONOMICS OF ROAD MAINTENANCE 22 

Principles of road maintenance economics 

 

Figure 3.2 Present values of costs graphed against time between rehabilitations 

 

 

Figure 3.3 Present values of costs graphed against agency costs 
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3.4 The marginal benefit–cost ratio (MBCR) concept 

3.4.1 Definition 

Figure 3.3, which expresses costs as functions of PVAC instead of cycle time, suggests an alternative way to set 
up the optimisation problem. The aim is to find the value of PVAC that minimises PVTTC. PVUC and PVTTC can 
be expressed as functions of PVAC. The optimum occurs where there first derivative of PVTTC with respect to 
PVAC equals zero, that is 

 
𝑑𝑃𝑉𝑇𝑇𝐶

𝑑𝑃𝑉𝐴𝐶
=

𝑑𝑃𝑉𝑈𝐶 + 𝑑𝑃𝑉𝐴𝐶

𝑑𝑃𝑉𝐴𝐶
=

𝑑𝑃𝑉𝑈𝐶

𝑑𝑃𝑉𝐴𝐶
+ 1 = 0 or −

𝑑𝑃𝑉𝑈𝐶

𝑑𝑃𝑉𝐴𝐶
= 1 

The expression −
𝑑𝑃𝑉𝑈𝐶

𝑑𝑃𝑉𝐴𝐶
 is the saving in the present value of user costs (expressed as a positive number) that 

results from a one dollar increase in PVAC. It can be termed the marginal benefit–cost ratio (MBCR). Like a 
conventional BCR, it measures the benefit per dollar of additional infrastructure spending. But unlike a 
conventional BCR, it applies only to a very small increase in spending. The MBCR equals one at the optimum. 

In our simple maintenance model with only rehabilitations occurring at intervals of T years, equations 3.3 and 
3.4 can be differentiated and combined to express the MBCR as 

 

𝑀𝐵𝐶𝑅 = −
𝑑𝑃𝑉𝑈𝐶

𝑑𝑇

𝑑𝑃𝑉𝐴𝐶

𝑑𝑇
⁄ = −

𝑑𝑃𝑉𝑈𝐶

𝑑𝑃𝑉𝐴𝐶
=

𝑢(𝑇) −
𝑟 ∫ 𝑢(𝑡) 𝑒−𝑟𝑡 𝑑𝑡

𝑇

0

(1 − 𝑒−𝑟𝑇)
𝑟 𝑐

(1 − 𝑒−𝑟𝑇)

 (3.6) 

Substituting in the condition for the optimum cycle time, equation 3.3, makes equation 3.6 equal one. 

The two graphs in Figure 3.4 show the MBCR in our numerical example as calculated from equation 3.6 
plotted against cycle time and against the present value of maintenance costs (PVAC). 

The MBCR rises as cycle time increases and falls as maintenance spending (PVAC) increases. The optimum 
cycle time and PVAC can be read off the graphs at the points where the MBCR equals one. The MBCR is quite 
sensitive to non-optimal maintenance timing, being 0.60 for a 35-year cycle time and 1.59 for a 45-year cycle 
time. To illustrate the interpretation of the concept, the latter MBCR of 1.59 implies that, if rehabilitations 
were being undertaken at 45-year intervals, road users would gain (or PVUC would be reduced by) $1.59 from 
spending an additional dollar of PVAC to shorten cycle lengths. 

Figure 3.4 Marginal benefit–cost ratio plotted against cycle time and maintenance spending 
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Equation 3.7 shows that the MBCR is negative the slope of the PVTTC curve in Figure 3.3 plus one. 

 
𝑀𝐵𝐶𝑅 = −

𝑑𝑃𝑉𝑈𝐶

𝑑𝑃𝑉𝐴𝐶
= −

(𝑑𝑃𝑉𝑈𝐶 + 𝑑𝑃𝑉𝐴𝐶)

𝑑𝑃𝑉𝐴𝐶
+

𝑑𝑃𝑉𝐴𝐶

𝑑𝑃𝑉𝐴𝐶
= −

𝑑𝑃𝑉𝑇𝑇𝐶

𝑑𝑃𝑉𝐴𝐶
+ 1 (3.7) 

3.4.2 Present value budget constraints 

The simplest type of budget constraint from an analytical viewpoint is a maximum allowable present value of 

road agency costs. The optimisation problem becomes: minimise PVTTC subject to PVAC  B, where B is the 
maintenance budget expressed as a present value. 

A present value budget constraint implies that funds can be shifted through time by borrowing or lending at 
an interest rate equal to the discount rate. While not necessarily realistic, it warrants discussion because it 
ensures an optimal allocation of limited funds over time and introduces the relationship between budget 
constraints and MBCRs before moving on to the more complex discussion of annual budget constraints. 

Consider a single road segment in isolation for which the amount of maintenance funds spent in each year is a 
continuous variable. Although this assumption is unrealistic for a single segment, as demonstrated below in 
Chapter 6, it holds approximately for analysis of a large number of small segments taken together. Figure 3.5 
shows level curves for PVTTC as a function of maintenance spending in two periods, c1 and c2, 𝑃𝑉𝑇𝑇𝐶(𝑐1, 𝑐2). 
In the absence of any budget constraints, optimum spending for the two periods occurs at the minimum 
point A with spending in each of the two periods of C1A and C2A respectively. 

Figure 3.5 Unconstrained and constrained optimums 

 

Since PVTTC is the same for all points on a level curve, along any curve 

𝑑𝑃𝑉𝑇𝑇𝐶 =
𝜕𝑃𝑉𝑇𝑇𝐶

𝜕𝑐1
𝑑𝑐1 +
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𝜕𝑐2
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A present value budget constraint in a two-period model, PVAC = p implies that 𝑝 =
𝑐1

(1+𝑟)
+

𝑐2

(1+𝑟)2, which is 

shown in Figure 3.5 as the line 𝑐2 = 𝑝(1 + 𝑟)2 − 𝑐1(1 + 𝑟). The constrained optimum occurs at point B 
(spending at C1B and C2B) where the constraint is tangent to the lowest level curve within reach. At this point, 
the slope of the level curve is the same as slope of the budget constraint line at –(1 + r). 

A higher discount rate will make the budget constraint line steeper, moving point B north-west and shifting 
spending from year one to year two. 

A formal mathematical approach is set out in Appendix A.1 where the optimisation problem is expressed as  

Minimise 𝑃𝑉𝑇𝑇𝐶(𝑐1, 𝑐2, 𝑐3, … ) subject to 𝑃𝑉𝐴𝐶 ≤ 𝐵  

 where ct is maintenance spending in year t and B is the present value budget constraint. 

The problem can be addressed using the method of Lagrange multipliers by minimising the Lagrange function 
or ‘Lagrangian’ 

 

𝐿 = 𝑃𝑉𝑇𝑇𝐶(𝑐1, 𝑐2, … , 𝑐𝑡 , … ) +  [∑
𝑐𝑡

(1 + 𝑟)𝑡
− 𝐵

∞

𝑡=1

] (3.8) 

 where λ is the Lagrange multiplier, and 𝑃𝑉𝐴𝐶 = ∑
𝑐𝑡

(1+𝑟)𝑡
∞
𝑡=1  

The Lagrange method to find the maximum or minimum of an objective function 𝑓(𝒙) subject to an equality 
constraint 𝑔(𝒙) = 0, where x is a vector of variables, combines the two functions into a Lagrangian function, 
𝐿(𝒙, 𝜆) = 𝑓(𝒙) + 𝜆𝑔(𝒙). The solution occurs at the point where all the partial derivatives of the Lagrangian 
function equal zero, including the derivative with respect to λ, which is the constraint, 𝑔(𝒙). The constrained 

optimum occurs at a saddle point of the Lagrange function. At this point, 
𝜕𝐿

𝜕𝑥𝑖
=

𝜕𝑓

𝜕𝑥𝑖
+ 𝜆

𝜕𝑔

𝜕𝑥𝑖
= 0, or 

𝜕𝑓

𝜕𝑥𝑖
=

−𝜆
𝜕𝑔

𝜕𝑥𝑖
 for all xi. This implies that the gradient vector of f(x), the vector of partial derivatives, is proportional to 

the gradient vector of the constraint, that is, ∇𝑓(𝒙) = −𝜆 ∙ ∇𝑔(𝒙), with –λ as the proportionality constant. 
The gradient vectors are therefore parallel. In the two-dimensional case of Figure 3.5, at point B, the gradient 
vectors are perpendicular to the tangents of the level curves. So having proportional gradient vectors for 
𝑃𝑉𝑇𝑇𝐶(𝑐1, 𝑐2) and 𝑐2 = 𝑝(1 + 𝑟)2 − 𝑐1(1 + 𝑟) implies that the level curves have the same slope at the 
optimum point, which Figure 3.5 illustrates. 

There are infinitely many points for which ∇𝑓(𝒙) = −𝜆𝑔(𝒙), or, in the case of Figure 3.5, 
𝑑𝑐2

𝑑𝑐1
= −(1 + 𝑟) for 

differing sizes of budget constraint. Finding the desired tangent point where 𝑔(𝒙) = 0, is determined by fixing 
the value of λ. If there are n variables x, there are n + 1 partial derivatives of the Lagrangian, including the 
partial derivative with respect to λ. Solving for the n + 1 unknowns gives the optimum solution. 

Appendix A.1 derives the mathematical conditions for the optimum for equation 3.8 and shows that, at the 
constrained optimum point,  

𝜆 = −
𝑑𝑃𝑉𝑇𝑇𝐶

𝑑𝑃𝑉𝐴𝐶
 

Since the Lagrange multiplier at the optimum point is the ratio of the gradient vector for the objective 
function to the gradient vector for the constraint, it indicates the change in the objective function that will 
occur for a one unit change in the constraint. 

Combining this last result for λ with equation 3.7 gives the result 

𝑀𝐵𝐶𝑅 = 𝜆 + 1 

showing the connection between the Lagrange multiplier and the MBCR. Optimisation subject to a present 
value budget constraint can give rise to an estimate of the MBCR. The link between the Lagrange multipliers 
and the MBCR is discussed further below in the context of annual budget constraints. 
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In practical applications, finding the optimum set of maintenance treatments subject a present value budget 
constraint is not much more difficult than unconstrained optimisation. The Lagrangian in equation 3.8 can be 
written as  

Minimise 

𝑃𝑉𝑇𝑇𝐶(𝑐1, 𝑐2, … , 𝑐𝑡 , … ) + ∑
𝑐𝑡

(1 + 𝑟)𝑡

∞

𝑡=1

 

= 𝑃𝑉𝑈𝐶 + 𝑃𝑉𝐴𝐶 + 𝜆∗ × 𝑃𝑉𝐴𝐶 

= 𝑃𝑉𝑈𝐶 + 𝑃𝑉𝐴𝐶 + (𝑀𝐵𝐶𝑅∗ − 1)𝑃𝑉𝐴𝐶 

= 𝑃𝑉𝑈𝐶 + 𝑀𝐵𝐶𝑅∗ × 𝑃𝑉𝐴𝐶 

where λ* and MBCR* are target values specified by the analyst. The budget amount, B, can be dropped 
from the minimisation expression because it is a constant. The analyst needs to specify a target MBCR above 
one and minimise the weighted value of PVTTC, that is, 𝑃𝑉𝑈𝐶 + 𝑀𝐵𝐶𝑅∗ × 𝑃𝑉𝐴𝐶. The optimisation may have 
to be done several times to find the target MBCR value that reduces PVAC to the budget constraint. 

Another, simpler way to demonstrate that minimising weighted PVTTC leads to the optimum result consistent 
with the target MBCR is as follows. The present values can be specified as functions of treatment time, as in 
equations 3.4 and 3.5. The optimisation problem is 

Minimise 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑉𝑇𝑇𝐶 = 𝑃𝑉𝑈𝐶 + 𝑀𝐵𝐶𝑅∗ × 𝑃𝑉𝐴𝐶 

 

𝑑𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑉𝑇𝑇𝐶

𝑑𝑇
=

𝑑𝑃𝑉𝑈𝐶

𝑑𝑇
+ 𝑀𝐵𝐶𝑅∗

𝑑𝑃𝑉𝐴𝐶

𝑑𝑇
= 0 

from which, 

−
𝑑𝑃𝑉𝑈𝐶

𝑑𝑇

𝑑𝑃𝑉𝐴𝐶

𝑑𝑇
= −

𝑑𝑃𝑉𝑈𝐶

𝑑𝑃𝑉𝐴𝐶
= 𝑀𝐵𝐶𝑅∗⁄  

Where the budget constraint applies to a group of road segments taken together or a network, the optimal 
allocation of maintenance funds would be found where the MBCR is the same for all segments. If one 
segment has a higher MBCR than another, shifting maintenance funds from the low-MBCR segment to the 
high-MBCR segment will generate a net saving in user costs for the two segments at no additional cost to the 
road agency. Hence, with a present-value budget constraint, optimisation modelling for multiple segments is 
not more difficult than for a single segment because one can optimise each segment in isolation from the 
others, applying the same target MBCR value as a weight to each segment. 

In remote and regional areas, road agencies may wish to maintain low volume roads at above economically 
optimal standards for social reasons. To inform such a policy, a maintenance optimisation model could be run 
with a target MBCR below one. 

3.4.3 Incremental BCR 

The MBCR is an ‘instantaneous’ BCR value as it applies at single point on the PVTTC curve. It is possible to 
define an ‘incremental’ BCR (IBCR) between any two points on the curve as 

𝐼𝐵𝐶𝑅 = −
∆𝑃𝑉𝑈𝐶

∆𝑃𝑉𝐴𝐶
= −

∆𝑃𝑉𝑈𝐶 + ∆𝑃𝑉𝐴𝐶 − ∆𝑃𝑉𝐴𝐶

∆𝑃𝑉𝐴𝐶
= −

∆𝑃𝑉𝑇𝑇𝐶

∆𝑃𝑉𝐴𝐶
+ 1 = −

𝑃𝑉𝑇𝑇𝐶1 − 𝑃𝑉𝑇𝑇𝐶2

𝑃𝑉𝐴𝐶1 − 𝑃𝑉𝐴𝐶2
+ 1 

The leftmost point on the curve, subscript 1, could be a do-minimum base case.  

The IBCR is one minus the slope of a line connecting the two points on the PVTTC curve being compared. This 
is illustrated in Figure 3.6 for the points A and B. Provided the curve is smooth, the IBCR between two points 
will lie between the MBCRs at the two points. In our numerical example, the IBCR from increasing PVAC from 
$230,727 where the MBCR is 2.0, to $270,891, where the MBCR is 1.5, is  
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𝐼𝐵𝐶𝑅 = −
$877,329 − $847,873

$230,727 − $270,891
+ 1 = −

−$29,456

$40,164
+ 1 = 1.73 

It is important that the PVTTC values at the start and endpoints for an IBCR be on the curve, that is, at the 
lowest possible PVTTC value for each PVAC value. For example, if the first point was above the curve and the 
second on the curve, the benefit from optimisation will be counted together with the benefit from the 
funding increase. The benefit from finding the optimal solution for a given PVAC value could be obtained 
without any change in PVAC. 

Figure 3.6  Incremental BCR 

 

3.4.4 Annual budget constraints 

Many road maintenance optimisation applications involve annual budget constraints. As noted above, present 
value budget constraints imply that the road agency can shift funds through time by borrowing and lending at 
the discount rate, which may not be realistic. Furthermore, unless the network is in very good condition at the 
start of the analysis period, the model is likely to recommend a very large amount of spending in the first year 
to catch up any backlog. Such a large amount in a single year may not be financially or physically possible. The 
economically optimal amounts of spending may fluctuate in subsequent years as well. Indeed, Fwa et al. 
(1994b, p. 713) consider a long-term uniformly distributed maintenance demand to be a meaningful objective 
of a maintenance program. 

Typically, in the modelling literature, a budget constraint for a whole network of segments together is set for 
each of the first several years, then no constraints thereafter. For example, Archondo-Callao (2008), 
demonstrating the HDM-4 model, imposed uniform budget constraints for the first five years of the analysis 
period. 

Referring back to the two-period case illustrated in Figure 3.5, when the first-year budget c1 is constrained to 
C1D, the constrained optimum is found at point D where a vertical line from C1D is tangent to a level curve at 

point D. With no constraint on year-two spending, 
𝜕𝑃𝑉𝑇𝑇𝐶

𝜕𝑐2
= 0, and the slope of the level curve at point D is 

infinite. At point D, as well as spending in year one being below the unconstrained optimum as required to 
meet the constraint, spending in year two is higher than at the unconstrained optimum. Generally, the tighter 
the constraint on first year spending, the higher the optimal amount of spending in the unconstrained second 
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year. Thus, clamping down on spending in a constrained year, pushes maintenance costs into unconstrained 
years. This effect is strongly in evidence in the case studies with annual budget constraints presented in 
Chapter 6. 

The Lagrange method can be applied to multiple constraints. In the mathematical exposition in Appendix A.2, 
PVTTC is made a continuous function of annual maintenance spending, ct, in each year, t, from one to infinity. 
Annual budget constraints are imposed for years 1 to m. Thereafter, spending is unconstrained for years m + 1 
to infinity. The optimisation problem is 

Minimise 𝑃𝑉𝑇𝑇𝐶(𝑐1, 𝑐2, … , 𝑐𝑚, 𝑐𝑚+1, … ) subject to 𝑐𝑡 ≤ 𝐵𝑡 for all years t = 1 to m 

 where ct is maintenance spending in year t and Bt is the budget for year t. 

The Lagrangian is 

𝐿 = 𝑃𝑉𝑇𝑇𝐶(𝑐1, 𝑐2, … , 𝑐𝑚, 𝑐𝑚+1, … ) + ∑𝑡(𝑐𝑡 − 𝐵𝑡)

𝑚

𝑡=1

 

 where λt is the Lagrange multiplier for year t. 

It is shown in Appendix A.2 that for any budget-constrained year t with a binding budget constraint, at the 
optimum 

𝑡 = −
𝜕𝑃𝑉𝑇𝑇𝐶

𝜕𝑐𝑡
= −

𝑑𝑃𝑉𝑇𝑇𝐶

𝑑𝑐𝑡
 

The partial derivative, 
𝜕𝑃𝑉𝑇𝑇𝐶

𝜕𝑐𝑡
, is the change in PVTTC from a change in spending in year t holding spending in 

all other years constant. The total derivative, 
𝑑𝑃𝑉𝑇𝑇𝐶

𝑑𝑐𝑡
, is the change in PVTTC from a change in spending in 

year t with spending in all other years adjusted to minimise PVTTC. In the case of the total derivative, PVTTC is 
optimised both before and after the change in ct. This equality is known generally as the envelope theorem 
(Cornes 1992). 

In Figure 3.5, the value of 1 is −
𝜕𝑃𝑉𝑇𝑇𝐶

𝜕𝑐1
 at point D. 

An MBCR for a single year t, MBCRt, can be defined as the saving in the present value of road user costs from 
increasing the budget in year t by one present-day dollar. The denominator of MBCRt has to be specified as a 
present value in year zero to be consistent with the BCR used for capital projects and the MBCR for present 
value budget constraints defined above. A small increase in maintenance spending in year t of dct, has a 

present value of 
𝑑𝑐𝑡

(1+𝑟)𝑡, which is the denominator of MBCRt. 

The numerator of MBCRt is not just the saving to users, dPVUC, but also includes the present value of changes 

in road agency costs in years other than t, that is, 𝑑𝑃𝑉𝐴𝐶 −
𝑑𝑐𝑡

(1+𝑟)𝑡. It is necessary to subtract the present 

value of the increase in maintenance spending in year t because it is already included in dPVAC. 

Hence, 

MBCRt = −
𝑑𝑃𝑉𝑈𝐶 + 𝑑𝑃𝑉𝐴𝐶 −

𝑑𝑐𝑡

(1 + 𝑟)𝑡 

𝑑𝑐𝑡

(1 + 𝑟)𝑡

  

 = −(1 + 𝑟)𝑡
𝑑𝑃𝑉𝑇𝑇𝐶

𝑑𝑐𝑡
+ 1  

 = (1 + 𝑟)𝑡𝑡 + 1 (3.9) 
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Thus, the MBCR for increasing the budget in year t can be obtained from the Lagrange multiplier for that year. 

The reason t has to be multiplied by (1 + r)t is that t is the saving in PVTTC from an additional dollar spent in 
year t. A one dollar increase in present day dollars equates to an increase of (1 + r)t year t dollars.  

For unconstrained years and for years when the budget constraint is non-binding, t = 0 and MBCRt = 1, which 
is to be expected. The result in equation 3.9 is used in the case study in Chapter 6 to obtain annual MBCRs 
from the optimisation process. 

In mathematical economics, Lagrange multipliers are ‘shadow prices’ because they trade the value of relaxing 
a constraint against the return in terms of the objective function (Bellman 1961, p. 103). Imagine that each 
road segment was controlled by a separate entity that incurs PVTTC in using and maintaining the segment. 
The entities have to bid for maintenance dollars to spend on their segment in specified years at a competitive 
auction. The values of the Lagrange multipliers would be the prices that would emerge from the auction 
expressed in year t dollars. Each segment owner would be willing to pay no more than the saving in PVTTC to 
them from obtaining an additional maintenance dollar. The market-clearing prices would be those that 
equate the demand for spending with the supply of funds in each of the budget-constrained years. 

Imposing uniform budget constraints, as shown in the Chapter 6 case study, typically requires high λt values in 
the early years when the demand for funds is high relative to budgets in order to suppress spending and push 
less economically warranted maintenance works into later years when funds are less scarce relative to 
demand and λt values can be lower. Hence, with uniform annual budget constraints, annual MBCRs will be 
highest in the first year of the analysis period and will progressively fall as the backlog is caught up. 

3.4.5 Incremental BCR for annual budget constraints 

The MBCR for a single year t, MBCRt, has been defined as the saving in the present value of road user costs 
from increasing the budget in year t by one present-day dollar. The IBCR equivalent, for a budget increase of 
any amount in a single year with a binding budget constraint is 

𝐼𝐵𝐶𝑅 = −
∆𝑃𝑉𝑈𝐶 + ∆𝑃𝑉𝐴𝐶 − ∆𝑃𝑉𝐵

∆𝑃𝑉𝐵
= −

∆𝑃𝑉𝑇𝑇𝐶

∆𝑃𝑉𝐵
+ 1 

where ΔPVB is the present value of the budget increase. ΔPVB could also be a present value for increases 
in multiple budget-constrained years. As with MBCRt, it is necessary to subtract the present value of the 
budget increase from the numerator because it is already included in ∆PVAC. After subtracting ΔPVB from 
∆PVAC, in the numerator, there remains other changes in PVAC due to changes in spending in years without 
budget constraints made by the optimisation process as a consequence of the increase in budgets for one or 
more years.14 

3.4.6 Use of the MBCR for maintenance spending 

For capital projects in a budget-constrained situation, the economically optimal choice of projects is found by 
selecting projects in descending order of BCR until either funds are exhausted or there are no more projects 
with BCRs above one, in which case the budget constraint is non-binding. The BCR of the last project to be 
accepted is the ‘cut-off BCR’ — the minimum acceptable BCR for a project to be funded. 

If investment projects were finely divisible, the cut-off BCR could be termed the MBCR for capital expenditure. 
It indicates the benefit to society, expressed as a present value, of increasing the capital budget by an 
additional dollar. It could be compared with the MBCR for maintenance spending to see if the split of funds 

---------- 
14  The IBCR for increases in annual budget constraints could alternatively be defined as in Section 3.4.3 above for present value 

budget constraints with ΔPVAC in the denominator. The IBCR would then measure the saving in PVUC per dollar of change in PVAC 
instead of PVB. The alternative definition of the IBCR for relaxing annual budget constraints with ΔPVAC in the denominator was 
tested using the case study in Chapter 6. The results reported footnote 30 in Chapter 6 showed that the IBCR with ΔPVAC in the 
denominator can differ greatly from the IBCR with ΔPVB in the denominator and can behave in unexpected ways as budget 
constraints are relaxed. This arises from the finding in Chapter 6 that modest annual budget constraints in the early years of the 
analysis period reduce PVAC, but then increase it as the constraints are progressively tightened. 
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between investment and maintenance spending is economically optimal. Given a road agency budget to 
divide up between capital and maintenance spending, the optimal split would occur where the MBCRs for 
capital and maintenance spending are the same. If the MBCR for maintenance spending is above that for 
investment spending, economic welfare could be improved by shifting funds from the investment budget to 
the maintenance budget, and conversely. To illustrate, if the funding split was such that the MBCRs were 2.0 
for capital and 4.0 for maintenance, shifting one dollar out of the capital budget would result in a loss of $2 in 
benefit, but added to the maintenance budget, the one dollar would earn a benefit of $4, a net gain of $2. 

The MBCR also provides information about the absolute level of funding. In the absence of any costs of raising 
funds, all investment and maintenance spending with a BCR above one is warranted because it will lead to a 
net economic gain. If there is a cost of raising public funds, for example, the disincentive effects of increasing 
income taxes, a cut-off BCR might be set above one by an amount equal to the marginal cost of public funds. 
For example, if raising an additional dollar of tax to spend on infrastructure costs $0.30, any funds spent on 
capital projects or maintenance with a BCR below 1.3 would result in a net loss to the economy. 

3.5 Cost-effectiveness analysis approach 

An alternative approach to road maintenance optimisation common in the literature and used by road 
agencies is to minimise PVAC subject to minimum road condition constraints, for example, maximum 
allowable roughness levels. This is a form of cost-effectiveness analysis because it seeks to find the least-cost 
way to achieve the objectives of the specified minimum standards. Minimum road condition constraints are 
essential because without them, the unconstrained minimum value of PVAC would be zero in theory, or the 
lowest cost consistent with the technical constraints within the model in practice. Present value budget 
constraints are not relevant, but annual budget constraints can be imposed to smooth and defer road agency 
spending, albeit at the expense of a higher PVAC value. 

The cost-effectiveness approach does not require a relationship between pavement condition and user costs 
in the model, but road users’ interests would be considered when setting the condition constraints. Different 
road condition standards will be required for groups of roads with different traffic levels, vehicle mixes and 
locations. It is desirable that the condition standards follow a similar pattern to economically optimal 
standards. For example, roads with higher traffic levels and higher proportions of heavy vehicles should be 
maintained to higher standards. Road agencies may divide their networks into sub-networks for the purpose 
of applying appropriate maintenance standards, grouping together roads according to traffic and economic 
importance. Multiple iterations may be needed to find the set of standards that, according to subjective 
judgement, offers the ‘right’ distribution of standards across sub-networks and regions and fits within the 
budget.  

Setting the minimum acceptable road conditions exogenously will almost certainly lead to a less economically 
efficient outcome compared to PVTTC minimisation, which allows the analysis to determine the maintenance 
standards considering users’ costs. 

Figure 3.7 illustrates the approach using the same two-period model as in Figure 3.5. Roughness in year one 
(R1) is a decreasing function of agency spending in year one (c1) and roughness in year two (R2) is decreasing 
function of spending in both years 1 and 2 (c1, c2). The greyed area represents all combinations of spending in 
the two years for which roughness in one or both two years is below the acceptable maximum (Rmax). The 
frontier along the south-west is the minimum value of c2 for each given value of c1 to remain within the zone. 
Points along the frontier just meet the maximum roughness standard and points to the left of and below the 
frontier are below the standard for one or both years.15 

To minimise 𝑃𝑉𝐴𝐶 =
𝑐1

(1+𝑟)
+

𝑐2

(1+𝑟)2, in the absence of any annual budget constraint, it is necessary to find the 

line 𝑝 =
𝑐1

(1+𝑟)
+

𝑐2

(1+𝑟)2 or 𝑐2 = 𝑝(1 + 𝑟)2 − 𝑐1(1 + 𝑟), with the smallest value of p consistent with values of c1 

---------- 
15 For a single segment, the maximum roughness frontier, where 𝑀𝑎𝑥[𝑅1(𝑐1), 𝑅2(𝑐1, 𝑐2)] = 𝑅𝑚𝑎𝑥 would be kinked at the point 

where the maximum roughness switches from the year-one roughness, R1, to the year-two roughness, R2, as c1 is increased and c2 
reduced. For a group of segments considered together, the frontier would be approximately smooth. 
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and c2 within the acceptable zone. This occurs where the line is tangent to the frontier of the acceptable zone 
at a point, A, with spending of C1A and C2A.  

Since the frontier is a level curve with a single maximum allowable roughness value, 

𝑑𝑅 =
𝜕𝑅

𝜕𝑐1
𝑑𝑐1 +

𝜕𝑅

𝜕𝑐𝑡
𝑑𝑐𝑡 = 0 

the slope of the frontier and the line at the point of tangency is 

𝑑𝑐2

𝑑𝑐1
= −

𝜕𝑅
𝜕𝑐1

𝜕𝑅
𝜕𝑐2

= −(1 + 𝑟) 

Higher discount rates will make the line steeper, moving point A north-west along the frontier, shifting 
spending from year one to year two. 

Once an annual budget constraint is introduced, such as c1 being constrained to the value C1B, in Figure 3.7, 
the minimum PVAC is found at point B where c2 is at a minimum consistent with the condition constraint 
region. However, unlike the case of Figure 3.5, point B is not a point of tangency with a level curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mathematically, the problem is to minimise 𝑃𝑉𝐴𝐶 = ∑
𝑐𝑡

(1+𝑟)𝑡
∞
𝑡=1  subject to a condition constraint that 

𝑀𝑎𝑥[𝑅1(𝑐1), 𝑅2(𝑐1, 𝑐2), 𝑅3(𝑐1, 𝑐2, 𝑐3), … ] ≤ 𝑅𝑚𝑎𝑥 and annual budget constraints 𝑐𝑡 ≤ 𝐵𝑡  for all years t = 1 to 
m. The condition constraint can be written more simply as 𝑅(𝑐1, 𝑐2, 𝑐3, … ) ≤ 𝑅𝑚𝑎𝑥. Over an infinite time 
horizon, it is inevitable that the condition constraint will be binding because a road section cannot go without 
a roughness-reducing treatment indefinitely. The constraint then becomes one of equality, 𝑅(𝑐1, 𝑐2, 𝑐3, … ) =
𝑅𝑚𝑎𝑥.  

Making this assumption, the optimisation problem is to minimise PVAC subject to 𝑅(𝑐1, 𝑐2, 𝑐3, … ) = 𝑅𝑚𝑎𝑥, 
and 𝑐𝑡 ≤ 𝐵𝑡  for all t = 1 to m. 

c2 

C2B 

c1 

C2A 
A 

p(1+r)2 

B 

C1A C1B 
0 

p(1+r) 

Max [R1(c1), R2(c1,c2)]  Rmax 

Figure 3.7 Minimum PVAC subject to condition and budget constraints 
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The Lagrangian to minimise is  

𝐿 = ∑
𝑐𝑡

(1 + 𝑟)𝑡

∞

𝑡=1

+ 𝜇[𝑅(𝑐1, 𝑐2, … , 𝑐𝑡 , … ) − 𝑅𝑚𝑎𝑥] + ∑𝑡(𝑐𝑡 − 𝐵𝑡)

𝑚

𝑡=1

 

where μ is the Lagrange multiplier for the condition constraint. It is shown in Appendix A.3 that for any 
budget-constrained year t,  

𝑡 = −
𝑑𝑃𝑉𝐴𝐶

𝑑𝑐𝑡
 

A one dollar increase in the budget constraint for year t, where the constraint is binding, causes changes in 
required spending in other years leading to a gross change in PVAC of λt. It is a gross change because dPVAC 
includes the increase in spending in year t. The ratio of the net change in PVAC to dct, discounted to the 
present, is an MBCR indicating the net financial benefit to the road agency from spending an additional 
(1 + 𝑟)𝑡 dollars in year t (equivalent to one dollar in year zero) not counting the increase in PVAC from the 
extra dollar. The subscript a is used to indicate that the benefits are limited to financial gains to the road 
agency. 

𝑀𝐵𝐶𝑅𝑎𝑡 = −
𝑑𝑃𝑉𝐴𝐶 −

𝑑𝑐𝑡

(1 + 𝑟)𝑡

𝑑𝑐𝑡

(1 + 𝑟)𝑡

= (1 + 𝑟)𝑡𝑡 + 1 

We could define an IBCRa to indicate the net benefit to the road agency from relaxing one more annual 
budget constraints by a non-small amount. 

𝐼𝐵𝐶𝑅𝑎 = −
∆𝑃𝑉𝐴𝐶 − ∆𝑃𝑉𝐵

∆𝑃𝑉𝐵
 

3.6 Analysis period 

The simple example in Section 3.3 had an infinite analysis period. Practical applications require a finite period. 
Switching from an infinite to a finite analysis period can alter the timings of maintenance treatments in the 
near future, which is of most interest, because the optimal time for a rehabilitation is affected by the costs 
and timings of future rehabilitations until such time as discounting makes the effect negligible. The effect is 
likely to be strongest when there are treatments due in the later years of the analysis period. With a finite 
analysis period, a model can save agency costs by deferring treatments to beyond the final year. At the end of 
the analysis period, the pavement is then left in poor condition. Treatments earlier in the analysis period 
might be delayed to compensate in part. 

One solution is to extend the analysis period sufficiently far beyond the period of interest to make any such 
effects small. The lower the discount rate, the longer the necessary extension into the future. An example 
from the literature is Tsunokawa and Ul-Islam (2003, p. 197). They used a 40-year evaluation period to avoid 
the effects of employing an arbitrary assumption regarding the salvage value at the end of the analysis period. 

An infinite time horizon, as in our simple model, is another solution. This is acceptable where a pavement can 
be assumed to reach a steady state with a uniform cycle of treatments into the indefinite future. Several 
models in the literature do this (see Table 4.1 in Chapter 4). 

A simple and practical solution is to impose a minimum pavement condition constraint at the end of analysis 
period. For example, the constraint could be that the final condition be no worse than the initial condition 
(Ouyang and Madanat 2004, p. 355 and 2006, p. 769). However, an arbitrary final condition constraint could 
have significant effects on the selection and timings of treatments over the analysis period if the model over-
maintains to meet a constraint set too high, or under-maintains to take advantage of a constraint set too low. 
Some models have minimum pavement condition constraints over the whole analysis period (see Table 4.1 in 
Chapter 4). This too can distort results if the constraint is set too high or too low. 

Another practical solution is to minimise PVTTC over a limited number of years minus a ‘residual value’ or 
‘salvage value’ of the road asset at the end of the analysis period. To compensate for the distortion caused by 
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absence of costs after the analysis period, the residual value has to mimic the behaviour of PVTTC for costs 
after the analysis period. Alternatively, a depreciation amount could be added at the end of the analysis 
period. The residual value and depreciation amounts are mirror images of one another in the sense that when 
one goes up by a certain amount, the other goes down by the same amount. 

The residual value can be defined as the price or construction cost of a new asset minus depreciation, V – D. 
Depreciation is zero for a new asset and rises as the asset ages reaching a maximum when the asset is fully 
worn out. The maximum will be the cost of restoring the asset in fully worn-out condition to new, or the 
replacement cost minus scrap value. Letting PVTTCn represent the PVTTC estimated over the analysis period 
of n years, minimising PVTTCn – (V – D) is the same as minimising PVTTCn + D because V is a constant. 

Ideally, the model would be indifferent between implementing a treatment at the end of the analysis period 
and not implementing it because the residual value or depreciation value changes by an offsetting amount. 

PVTTC can be split into two parts, costs in years from zero to the end of the analysis period, t*, and costs in 
years after t* to infinity, with the latter discounted back to year 0 by multiplying it by 𝑒−𝑟𝑡∗

. δ* is the 
pavement age at the end of a finite analysis period. 

𝑃𝑉𝑇𝑇𝐶(𝑇, 𝛿) = 𝑃𝑉𝑇𝑇𝐶(𝑇, 𝛿)
0
𝑡∗

+  𝑒−𝑟𝑡∗
𝑃𝑉𝑇𝑇𝐶(𝑇, 𝛿∗)

𝑡∗
∞

 

where 

• 𝑃𝑉𝑇𝑇𝐶(𝑇, 𝛿)
0
𝑡∗

= present value of total transport posts over the analysis period, years 0 to t* , with a 

pavement age at year zero of δ. 

• 𝑃𝑉𝑇𝑇𝐶(𝑇, 𝛿∗)
𝑡∗
∞

 = present value of total transport costs after the analysis period discounted to year t*. 

To counter the effect of a finite analysis period, the residual value has to mimic the behaviour of 
𝑃𝑉𝑇𝑇𝐶(𝑇, 𝛿∗)

𝑡∗
∞

 as T and δ* change. In the simple illustrative model in this chapter with a single rehabilitation 

treatment, PVTTC increases with pavement age in year zero. The range over which PVTTC changes over the 
range of pavement ages in year zero, 0 ≤ δ ≤ T, is the rehabilitation cost. 

To demonstrate this, equations 3.1 and 3.2 above, which express PVTTC as a function of cycle length, T, and 
pavement age at year zero, δ, can be written as 

𝑃𝑉𝑇𝑇𝐶(𝑇, 𝛿) = ∫ 𝑢(𝑡 + 𝛿)𝑒−𝑟𝑡𝑑𝑡
𝑇−𝛿

0

+
𝑒−𝑟(𝑇−𝛿)

(1 − 𝑒−𝑟𝑇)
[𝑐 + ∫ 𝑢(𝑡) 𝑒−𝑟𝑡𝑑𝑡

𝑇

0

] 

The difference in PVTTC between an old pavement just prior to rehabilitation, δ = T, and a new pavement, δ = 
0, is the rehabilitation cost, c. 

𝑃𝑉𝑇𝑇𝐶(𝑇, 𝑇) − 𝑃𝑉𝑇𝑇𝐶(𝑇, 0) = [
𝑐+∫ 𝑢(𝑡) 𝑒−𝑟𝑡𝑑𝑡

𝑇

0

(1−𝑒−𝑟𝑇)
] − [∫ 𝑢(𝑡)𝑒−𝑟𝑡𝑑𝑡

𝑇

0
+

𝑒−𝑟𝑇[𝑐+∫ 𝑢(𝑡) 𝑒−𝑟𝑡𝑑𝑡
𝑇

0
]

(1−𝑒−𝑟𝑇)
] = 𝑐                   (3.10) 

Using our numerical example to illustrate the point, with cycle time, T, set equal to the optimal time of 
40 years, the difference in PVTTC between a pavement of 40 years of age and a new pavement (zero years of 
age) is, 𝑃𝑉𝑇𝑇𝐶(40, 40) − 𝑃𝑉𝑇𝑇𝐶(40, 0) = $2.16 million – $0.83 million = $1.33 million, the cost of a 
rehabilitation. Note that equation 3.10 holds for all values of T, not just the optimal value. 

With a residual value that mimics 𝑃𝑉𝑇𝑇𝐶(𝑇, 𝛿∗)
𝑡∗
∞, if the model attempts to reduce PVTTC by delaying the last 

rehabilitation until after the analysis period, which will save a cost of c dollars, the cost saving is exactly 
negated by the residual value falling (or depreciation rising) by c dollars. 

Using our numerical example, Figure 3.8 shows that straight-line depreciation can be a reasonable 
approximation for an infinite time horizon.  

Setting the value of a newly-rehabilitated pavement, V, equal to the rehabilitation cost, c = $1.3 million, the 
three curves show 

• residual value from straight-line depreciation: [𝑃𝑉𝑇𝑇𝐶(40,40) − 𝑃𝑉𝑇𝑇𝐶(40,0)] (1 −
𝛿

∗

40
) = 𝑐 (1 −

𝛿
∗

40
) 

• exact residual value: 𝑐 + 𝑃𝑉𝑇𝑇𝐶(40,0) − 𝑃𝑉𝑇𝑇𝐶(40, 𝛿∗) = 𝑃𝑉𝑇𝑇𝐶(40,40) − 𝑃𝑉𝑇𝑇𝐶(40, 𝛿∗) 



THE ECONOMICS OF ROAD MAINTENANCE 34 

Principles of road maintenance economics 

 

• exact residual value for road agency costs: 𝑐 + 𝑃𝑉𝐴𝐶(40,0) − 𝑃𝑉𝐴𝐶(40, 𝛿∗) = 𝑃𝑉𝐴𝐶(40,40) −

𝑃𝑉𝐴𝐶(40, 𝛿∗). 

The residual value for road agency costs is relevant for minimising road agency costs subject to pavement 

conditions as discussed in Section 3.5. From equation 3.5, 𝑃𝑉𝐴𝐶 =
𝑒−𝑟(𝑇−𝛿)

(1−𝑒−𝑟𝑇)
𝑐. 

𝑃𝑉𝐴𝐶(𝑇, 𝑇) − 𝑃𝑉𝐴𝐶(𝑇, 0) =
1

(1 − 𝑒−𝑟𝑇)
𝑐 −

𝑒−𝑟𝑇

(1 − 𝑒−𝑟𝑇)
𝑐 = 𝑐 

showing that, just as for PVTTC, the range of variation in PVAC over the course of the cycle is the 
rehabilitation cost, c. 

Figure 3.8 Residual value decline as a function of pavement age: actual and straight-line depreciation 

 

Straight line depreciation will be more approximate when the pavement is part-way through the cycle, when 
it differs most from the actual PVTTC or PVAC, as Figure 3.9 illustrates. Another source of approximation 
arises from the assumptions in the simple illustrative model of uniform cycles and a single treatment type. 
Changes in traffic levels and vehicle mixes over time will cause optimal cycle times to change over time. 
Different treatment types will restore a pavement by different amounts and have different costs. A practical 
solution to the problem of different treatment types is to use condition-based depreciation, for example, 
based on roughness or a combination of condition measures. 

Due to the approximate nature of the depreciation estimate in its role of serving as a proxy for PVTTC or PVAC 
beyond the analysis period, it is still advisable to have an analysis period that extends well beyond the period 
of interest so as to reduce the impact of errors in the depreciation approximation. Our case study below uses 
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an analysis period of 40 years, while budget constraints are imposed only for the first 10 or 20 years. 
Sensitivity tests are undertaken of shortening the analysis period to 30 and 20 years to show the effects of 
greater reliance on the depreciation estimate. 

3.7 Multiple treatment types 

Multiple treatment types can be modelled either by making treatment intensity a continuous variable or 
having the model choose between alternative discrete treatment types. A more intense treatment, such as a 
greater overlay thickness, will have a greater effect on reducing roughness but will cost more to implement.  

In Chapter 4, Section 4.3.1.1, it is reported that models with continuous pavement intensity almost invariably 
find that the optimal strategy is to resurface either to the highest or the lowest standard permitted by the 
model (a corner solution) rather than an intermediate standard that balances the marginal benefit and 
marginal cost of increasing overlay thickness. 

With multiple discrete treatment types to choose between, the optimisation problem becomes much more 
complex. Instead of a smooth, continuous cost surface with a single minimum point for a single segment, 
there are discrete choices between treatment types giving rise to multiple local minimums. 

Figure 3.9, based on a diagram in Tsunokawa and Ul-Islam (2003, p. 196), shows how the results might appear 
for a single segment if PVTTC values from various options with multiple treatment types were plotted against 
the present value of maintenance costs. The term ‘option’ is used throughout this report to refer to a set of 
treatments, distinguished by type and implementation time, to be carried out over the analysis period. For 
each spending level (PVAC), only the options with the lowest PVTTCs are of interest. Joining the minimum 
values together with a smooth curve would produce a U-shaped curve, the same relationship as shown in 
Figure 3.3. The minimum point of the curve, at spending level A, is the unconstrained optimum. The point on 
the curve above spending level B is shows the optimum with a present value budget constraint of B. 

Figure 3.9 Illustration of present values of total transport costs from different maintenance options 

 

3.8 Optimising the investment–maintenance trade-off 

While the present report focusses on maintenance with design standards as taken given, a short digression is 
included here on the economic principles of optimising the trade-off between investing in stronger, more 
durable pavements to save on maintenance costs. 

$ PVAC 

$ PVTTC 
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Incurring higher investment costs to construct a stronger pavement at the outset saves future maintenance 
and user costs. For flexible pavements, greater initial pavement strength (a higher structural number) leads to 
a lower deterioration rate, as Paterson’s algorithm, presented in Chapter 2, illustrates. In the extreme, a 
concrete pavement costs much more than a flexible pavement to construct but requires far less future 
maintenance spending to provide a given level of service to users. 

The optimisation problem in the absence of budget constraints has the same form as Figure 3.2 above. With 
pavement strength on the horizontal axis, as pavement strength increases, construction costs rise and the 
optimised PVTTC for maintenance falls. By ‘optimised PVTTC’ here, is meant the PVTTC for maintenance for 
each pavement strength that minimises the sum of road agency and user costs given pavement strength. 
Vertically adding the upward-sloping capital cost curve and downward-sloping maintenance cost curve 
produces a U-shaped total cost curve. Letting K represent capital costs and s, pavement strength, the 
optimum occurs where 

𝜕𝐾

𝜕𝑠
= −

𝜕𝑃𝑉𝑇𝑇𝐶

𝜕𝑠
 

that is, where the additional capital cost from increasing pavement strength by one unit equals the resultant 
saving in PVTTC. The optimum pavement strength condition can be rewritten as −𝜕𝑃𝑉𝑇𝑇𝐶 𝜕𝐾⁄ = 1. The 
interpretation is that investment in increased pavement strength should occur as long as the benefit from 
each in additional dollar invested, that is the saving in PVTTC, exceeds one. As more is invested in pavement 
strength, the law of diminishing returns causes the marginal benefit to fall. It is not worthwhile to invest 
beyond the point where the marginal benefit falls below the one-dollar marginal cost. Higher traffic levels are 
associated with stronger pavements because the savings in user costs from additional spending on stronger 
pavements are greater. 

There is little literature on optimising the pavement strength–maintenance trade-off. Tsunokawa and Ul-lslam 
(2003) tested combinations of initial pavement design options with varying strengths, maintenance options 
(condition-responsive overlays with varying threshold roughness values and thicknesses), traffic loadings, and 
national economic characteristics (discount rates and wage rates, which affect the value of time for users and 
agency costs). 

According to the above formulation of the optimum pavement strength condition, the benefits from a 
stronger pavement are realised as a combination of savings in user costs and maintenance costs. In the 
models of Small et al. (1989) and Newbery (1989), the benefit from a stronger pavement is realised entirely in 
the form of a saving in maintenance costs, with no change to user costs. In their models, the intervention 
roughness level is exogenous, so a stronger pavement increases the time interval between rehabilitations 
with no impact on the present value of user costs.16 With user costs fixed, their models minimise K + PVAC. 
The resulting optimal condition is that pavement strength should be adjusted to set 𝜕𝐾 𝜕𝑠⁄ = −𝜕𝑃𝑉𝐴𝐶 𝜕𝑠⁄ . 
The marginal investment cost from building a slightly stronger pavement is equated with the marginal benefit 
of a reduced maintenance cost to the road agency. 

We now consider optimal pavement strength in the presence of budget constraints on maintenance and 
capital spending.  

---------- 
16  Newbery’s (1989) model has an interesting conceptual simplification. For a single homogeneous segment of pavement considered 

in isolation, any change in rehabilitation timings would change the present value of user costs, but for a group of identical 
segments with a uniform age distribution taken together, there is no change. A vehicle travelling over all the segments would 
experience the full range of possible roughness levels. For example, with a 40-year rehabilitation period, there would be 40 one-
kilometre segments with end-of-year ages from 1 to 40. At the end of each year, the oldest kilometre of pavement is rehabilitated, 
so the average age for the 40 segments does not change from year to year. If the rehabilitation period was raised to 60 years as a 
result of building a stronger pavement, there would be 60 segments of two-thirds of a kilometre in length, with end-of-year ages 
from 1 to 60. The average roughness, and hence user cost, would be the same in both cases, but the agency’s annual rehabilitation 
cost would be one third lower than for the 40-year rehabilitation period. 
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If pavement strength for a segment is increased by one unit, the cost will be 𝜕𝐾 𝜕𝑠⁄ . If the cost comes out the 
capital budget for which the cut-off BCR is MBCRk, the opportunity cost of the unit increase in pavement 

strength is the benefits forgone by not investing the capital cost in infrastructure projects, 
𝜕𝐾

𝜕𝑠
𝑀𝐵𝐶𝑅𝑘. 

The unit increase in pavement strength for a particular segment means that 𝜕𝑃𝑉𝐴𝐶 𝜕𝑠⁄  in maintenance costs 
can be saved with no reduction in user costs for that segment. That saving effectively increases the 
maintenance budget yielding a benefit of 𝑀𝐵𝐶𝑅𝑚 = − 𝜕𝑃𝑉𝑈𝐶 𝜕𝑃𝑉𝐴𝐶⁄ . The benefit from a unit increase in 

pavement strength is therefore −
𝜕𝑃𝑉𝐴𝐶

𝜕𝑠
𝑀𝐵𝐶𝑅𝑚. The negative sign is needed because PVAC reduces as 

pavement strength increases. 

The optimum pavement strength occurs where there are no longer any gains to made by shifting funds 
between spending on capital projects and investing in pavement strength, that is, where  

𝜕𝐾

𝜕𝑠
𝑀𝐵𝐶𝑅𝑘 = −

𝜕𝑃𝑉𝐴𝐶

𝜕𝑠
𝑀𝐵𝐶𝑅𝑚 

This can be rewritten as 

 −
𝜕𝑃𝑉𝐴𝐶

𝜕𝐾
 =

𝑀𝐵𝐶𝑅𝑘

𝑀𝐵𝐶𝑅𝑚
 (3.11) 

The last expression implies that the optimal pavement strength is found where the saving in PVAC from an 
additional dollar spent on building a stronger pavement is equated to the ratio of the MBCRs for capital and 
maintenance spending. The more maintenance spending is constrained relative to capital spending, the lower 
the ratio 𝑀𝐵𝐶𝑅𝑘 𝑀𝐵𝐶𝑅𝑚⁄ . If maintenance spending is more constrained than capital spending, there will be 
net economic benefits from diverting funds within the capital budget away from new infrastructure projects 
to build stronger pavements reducing the pressure on the more constrained maintenance budget. The 
converse applies if capital spending is more constrained than maintenance spending.  

Using HDM-4 simulations, Tsunokawa and Ul-Islam (2003) showed that optimal pavement strength is higher 
with budget-constrained maintenance spending. They made an implicit assumption that investment funds are 
unconstrained (MBCRk = 1). Their finding is consistent with equation 3.11, because, if the with right side of 
equation 3.11 is below one due to MBCRm > 1, more has to be spent on pavement strength in order to bring 
the left side of the equation down below one. 

It is clearly a ‘second-best’ outcome to have the pavement strength decision affected by different relative 
scarcities of funds in separate investment and maintenance budgets. It would be better to ensure similar 
MBCRs for investment and maintenance, even if both are above one. Then optimal pavement strength will be 
found where −𝜕𝑃𝑉𝐴𝐶 𝜕𝐾⁄ = 1, that is, increase strength up to the point where the saving in PVAC from the 
marginal dollar invested equals one. 

3.9 Optimal incentives in maintenance contracts 

The model of maintenance optimisation developed here fits neatly into the incentive regulation framework 
for commercial road supply in Harvey (2015). Harvey’s framework applies to the complete supply of road 
services by a public utility or private firm. It is shown here how it can be applied at a less ambitious level to 
outsourcing of maintenance activities to a contractor. This is often done with performance-based contracts in 
which the contractor is required to ensure a road meets specified minimum condition standards rather than 
being required to carry out specified works (Zeitlow 2006). Under the terms of the contract, financial 
penalties are imposed for failing to meet the required condition standards. In Harvey’s scheme, the sole 
performance measure is generalised user costs and the penalties for under-performance and bonuses for 
over-performance exactly equal their marginal social values. The model and parameters for estimating user 
costs form part of the performance contract. With the impact of road condition on user costs effectively 
internalised into the supplier’s revenue stream, profit maximising behaviour by the supplier leads to the 
welfare maximising outcome. 
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For simplicity, we initially assume an infinite time horizon. It is also assumed that the social and private 
discount rates are identical. Adapting Harvey’s shadow toll formula, for a single road segment, the 
maintenance contractor is paid in year t of the maintenance cycle, an annual sum of 𝑝 − [𝑐(𝑡) − 𝑐(0)] where 
p is a constant, c(t) is annual user cost in year t and c(0) is annual user cost with a new pavement. 

The annual payment would then be highest just after the pavement had been rehabilitated, at which time 
𝑐(𝑡) − 𝑐(0) = 0. Payments would reduce as the pavement becomes rougher causing c(t) to rise above c(0). 
Thus annual maintenance payments follow a sawtooth pattern over time, the mirror image of the pattern for 
user costs. With r the discount rate and an infinite time horizon, the present value of the contractor’s profit, 
Π, is 

𝑃𝑉𝛱 =
𝑝

𝑟
− [𝑃𝑉𝑈𝐶 −

𝑐(0)

𝑟
] − 𝑃𝑉𝑀𝐶 =

[𝑝 − 𝑐(0)]

𝑟
− 𝑃𝑉𝑇𝑇𝐶 

where PVMC is the present value of maintenance costs incurred by the contractor (equivalent to PVAC). 

As defined earlier in this chapter, PVUC and PVMC are functions of the time interval between treatments, T. 
To maximise profits, the contractor would schedule maintenance treatments to set dPVΠ/dT = 0. Since 
[𝑝 − 𝑐(0)] 𝑟⁄  is constant with respect to maintenance expenditure, the contractor will aim to set 
dPVTTC/dT = 0, which is the same as the condition for minimising social costs. A competitive tender process 
would ensure that p was bid down to the point where [𝑝 − 𝑐(0)] 𝑟⁄ − 𝑃𝑉𝑇𝑇𝐶 = 0 with r including a normal 
return on investment. The value of c(0) is exogenous. A different value of c(0) would be exactly offset by a 
changed value of p. The value of p would be affected by pavement age at the start of the contract, being 
higher for an old pavement because future rehabilitations occur sooner. With the reward for over-
performance and the penalty for under-performance exactly mirroring the impacts of pavement condition on 
user costs, the contractor has then an incentive to maintain at the optimal standard. 

Harvey’s shadow toll formula includes a ‘correction factor’, ψ that modifies the incentive faced by the supplier 
in situations when the regulatory authority or road agency wishes to deliberately engender over- or under-
investment or maintenance. This might occur for maintenance if the road agency had constrained funds 
necessitating underspending, or had to meet an obligation imposed by the government to provide a minimum 
service level requiring overspending. The annual payment to the maintenance contractor becomes, 𝑝 −
𝜓[𝑐(𝑡) − 𝑐(0)] and the contractor’s profit function is 

𝑃𝑉𝛱 =
𝑝

𝑟
− 𝜓 [𝑃𝑉𝑈𝐶 −

𝑐(0)

𝑟
] − 𝑃𝑉𝑀𝐶 =

[𝑝 − 𝜓𝑐(0)]

𝑟
− 𝜓𝑃𝑉𝑈𝐶 − 𝑃𝑉𝑀𝐶 

Profit maximisation requires the contractor to set 

 
𝑑𝑃𝑉𝛱

𝑑𝑇
= −𝜓

𝑑𝑃𝑉𝑈𝐶

𝑑𝑇
−

𝑑𝑃𝑉𝑀𝐶

𝑑𝑇
= 0 which implies 𝜓 = −

𝑑𝑃𝑉𝑀𝐶

𝑑𝑃𝑉𝑈𝐶
= −

1

𝑀𝐵𝐶𝑅
  

If the road had be maintained at a standard below the economic optimum for budgetary reasons, (MBCR > 1), 
the road agency would set ψ below one at the reciprocal of the MBCR that achieves the budget constraint. 
This reduction in the financial reward for better maintenance leads to a lower standard of maintenance being 
provided. The tender process would ensure that the value of p was lower than otherwise so the contactor’s 
costs were exactly covered. Conversely, if the aim was to maintain the road at an above-optimal standard, the 
road agency would set ψ above one. 

If the contract was to terminate at a given future date, the contractor faces an incentive to defer the last 
treatment. The incentive could be removed by including in the contract an end-of-term adjustment whereby 
one party pays the other the difference between the actual depreciation amount and an agreed depreciation 
amount. 

3.10 Conclusion 

The underlying principle of road maintenance economics is to minimise the present value of total transport 
costs, trading off the benefit of savings in user costs from higher maintenance standards against the 
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additional costs to the road agency. For the simplest case where there is a single treatment type, an 
optimisation model has to find the optimal times to implement treatments. For a more complicated model, 
there will also be multiple treatment options to choose between. Budget constraints can be introduced 
expressed either as a present value of road agency costs or as annual spending maximums. The latter is more 
realistic but, as subsequent chapters will demonstrate, is much more difficult analytically. 

The marginal and incremental benefit–cost ratio (MBCR and IBCR) concepts introduced in this chapter offer 
decision makers useful information about the economic value of adjusting maintenance spending and can be 
compared with BCRs for investment projects. Using the formula derived in Section 3.4.4, 𝑀𝐵𝐶𝑅𝑡 =
(1 + 𝑟)𝑡𝑡 + 1, values for MBCRs can be obtained from the optimisation process, which is demonstrated by 
the case studies in Chapters 5 and 6. 

Having a finite analysis period in maintenance modelling can distort the optimal solution. Ways to minimise 
the distortion include subtracting a residual value or adding a depreciation amount at the end of the analysis 
period, and setting the analysis period well beyond the period of interest. 

The topics of optimising the pavement strength and setting optimal incentives in maintenance contracts were 
addressed at a theoretical level at the end of the chapter, drawing on the concepts and model developed. 
These are not pursued further in the remainder of the report. 
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4. Maintenance optimisation modelling literature 
review 

Summary 

There is large body of literature from the civil engineering discipline on road maintenance optimisation in 
which authors specify a problem and present one or more solution methodologies. In most cases, each article 
uses a quantitative case study to illustrate and test the methodology. In general terms, the problem is to 
select a set of maintenance treatments from a menu of alternative treatment types, each with its own effects 
on pavement condition and implementation costs, together with times to implement the selected treatments, 
that maximises or minimises an objective function subject to budget and/or pavement condition constraints. 

Some studies minimise the present value of total transport costs without budget constraints, which yields the 
most economically efficient solution. A number do this with present value, annual or average annual budget 
constraints. Some minimise either the present value or undiscounted sum of road agency costs over the 
analysis period subject to minimum pavement condition constraints. Then there are models that maximise a 
variety of pavement condition measures. 

Most of the deterioration models in the road maintenance optimisation literature are either deterministic 
with continuous pavement condition or probabilistic with discrete pavement condition adopting a Markov 
chain approach. There is disagreement in the literature about the advantages and disadvantages of 
deterministic and probabilistic approaches. 

The number of possible solutions to road maintenance optimisation problems rises exponentially with the 
numbers of treatment types, analysis years and segments. This is known as the ‘curse of dimensionality’ or 
‘combinatorial explosion’. Each case study in the literature has to manage the curse of dimensionality through 
a combination of restricting the numbers of segments analysed together, treatment types and analysis years, 
and by applying a suitable optimisation method. 

Some early articles used ‘prioritisation’ approaches which, while straightforward to implement, are unable to 
find genuine optimum solutions over the long term. 

Over the last 40 years during which most of the literature has developed, increasing computer speeds have 
vastly increased the maximum feasible size of problems that can be optimised. Mathematical optimisation 
techniques such as linear, integer and dynamic programming are able to find optimum solutions provided the 
number of possible solutions is not too great. Heuristic optimisation algorithms, such as genetic algorithms, 
have extended the size of problem that can be accommodated. They can find good solutions but the solutions 
are not necessarily the overall optimum. Their effectiveness declines for extremely large problems.  

Two-stage approaches have been developed in which the best or a number of better solutions are found for 
each segment considered in isolation without any budget constraints in the first stage, followed by a 
prioritisation approach employed in the second stage to choose a set of solutions that fits within annual 
budget constraints. 

4.1 Introduction 

This chapter reviews the road maintenance optimisation literature and discusses alternative approaches to 
road maintenance optimisation modelling. The literature on application of mathematical optimisation 
methods applied to road maintenance is voluminous, and this report makes no claim to complete coverage. 
The literature review concentrates on journal articles, with only a few conference papers cited. Some articles 
were not cited because they provided insufficient detail on their approach. There is also a substantial body of 
related literature not examined on maintenance optimisation in general and applied to infrastructure other 
than roads, such as bridges. 
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Only two of the articles cited in this chapter, Abelson and Flowerdew (1975) and Gerchak and Waters (1978), 
are from the economics discipline. The rest are from civil engineering journals and conferences. Consequently, 
a significant proportion of the articles adopt frameworks not aligned with economic principles. Examples 
include use of prioritisation methods that do not lead to optimal solutions, optimising non-monetary 
objectives such as a pavement condition indicator, and not discounting costs. 

There are different ways to group the various approaches in the literature. In this literature review, models 
are split into those with continuous and discrete pavement condition and within each of these categories, 
deterministic and probabilistic models. Each of these four groups is discussed in turn. Then the chapter 
addresses some of the major technical issues faced when attempting to optimise road maintenance, in 
particular, the potentially huge number of combinations of treatment types and possible treatment times, 
sometimes referred to as the ‘curse of dimensionality’ or ‘combinatorial explosion’. Others matters addressed 
include the variety of objective functions, constraints and optimisation techniques found in the literature. 

4.2 Prioritisation methods 

The simplest approach to maintenance management is to base decisions on current pavement condition. The 
worse the pavement condition, the higher the priority to treat the pavement (Zimmerman 1995, p. 5). Early 
pavement management systems ranked pavements according to a simple condition measure, such as a 
weighted index of current distresses. Treatment projects would be developed for the higher-ranking 
pavements, costs estimated, and projects chosen in descending order until the available budget was 
exhausted (Kulkarni and Miller 2003). Ideally, adjustments would be made to rankings for the class of road or 
traffic level, recognising that, for economic and community expectations reasons, more important roads in a 
network should be kept in better condition than less important roads. Some subjective pavement condition 
measures take account of the condition required for a road to meet its traffic task. For example, Shar et al. 
(2014) prioritised maintenance according to the product of four indicators: a road condition index, a traffic 
volume factor, a drainage factor and a factor related to the importance (class) of the road. 

Wang et al. (2003, p. 22) pointed out two major disadvantages of ranking methods. First, with the most 
severely damaged pavement sections given the highest priority, the highly ranked segments can consume the 
entire budget, ignoring the effect on overall network condition. Second, treatment timing is not well handled. 
For example, some segments with a low ranking may deteriorate rapidly over the coming few years, 
necessitating a much more costly later treatment. 

The next level approach to pavement management is to prioritise maintenance projects across a network and 
over time using a rule that takes account of benefits and costs. The most common approaches are cost-
effectiveness (that is, improvement in a road condition measure divided by increase in cost) and benefit–cost 
ratios (BCRs), which may be defined in a variety of ways. The time period over which benefits are measured 
can be as short as just one year or much longer using a deterioration model. 

One form of cost-effectiveness ratio is the area under a performance curve (that is, a pavement condition 
index as a function of time, with higher values of the index representing better condition) above a minimum 
acceptable level divided by the treatment cost (Zimmerman 1995, p.9; Li et al. 1998). When the index is below 
the minimum acceptable level, the area is counted as zero. The ratio is multiplied by average annual daily 
traffic (AADT). Under the ‘priority programming’ approach of Li et al. (1997b), the sum of cost-effectiveness 
ratios of treatment alternatives for a network over an analysis period was maximised using prioritisation to 
find the optimum.  

Replacing the condition index with road user cost saving compared with road user cost at the minimum 
acceptable pavement condition, produces a similar curve that declines over time at an increasing rate 
following a treatment. Road user cost indicates users’ willingness-to-pay for improvements in pavement 
condition and so is an improvement on condition indexes from an economic point of view. The resultant cost 
effectiveness ratio could be termed a benefit–cost ratio. The HDM-4 model prioritises treatments using an 
‘incremental net present value/cost ratio’ defined as the difference between the net present value of the 
selected project alternative and the net present value of the base alternative, divided by the cost of the 
selected project (Odoki and Kerali 2006, Volume 4, A1-17 and G1-26; Part A,). 
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The main weakness of prioritisation methods is that they do not ensure the best possible maintenance 
strategies over long planning time spans (Meneses and Ferreira 2013; Jorge and Ferreria 2012). For 
alternatives that require more than one treatment during the budget-constrained years (for example, 
treatments in years 3 and 15), the incremental BCR approach would take account only the budgetary cost of 
the first treatment. Effects of any decision about the next treatment on future optimal treatment types and 
times are ignored. 

4.3 Overview of optimisation models 

Finding the optimum set of treatment types and times requires use of an optimisation model. The discussion 
in this chapter categorises models in the literature first according to whether pavement condition is treated as 
a continuous variable (for example, roughness or pavement condition index) or a discrete variable with a 
number of condition states specified. At the second level, models are categorised according to whether they 
are deterministic or probabilistic. Deterministic models forecast single values for one or more condition 
measures at each point in time while probabilistic models estimate multiple values at each point in time with 
probabilities attached to them. 

Following this categorisation method, Tables 4.1 and 4.2 list the articles reviewed that apply optimisation 
techniques to road pavement maintenance. The articles in the tables all present a model, or models, 
illustrated by one or more case studies. In broad terms, the models seek to maximise or minimise an objective 
function usually subject to constraints. For one or more pavement segments or ‘families’ of segments grouped 
together, the model decides for each year of the analysis period which treatment type to apply from a menu 
of alternatives that includes the null treatment (do-nothing or do-minimum). 

4.3.1 Continuous pavement condition group — Table 4.1 

4.3.1.1 Continuous pavement condition and deterministic category 

The simple model presented in Chapter 3 is an example of a deterministic model with continuous pavement 
condition. It has time as a continuous variable and a single treatment type — rehabilitation. These 
characteristics are shared by some of the models in Table 4.1. Deterioration functions are usually specified as 
simple exponential curves that are a function of time. Models of this type are aimed at understanding the 
determinants of optimal maintenance policies and reaching general conclusions rather than serving as tools 
with which to develop actual maintenance programs. 

Li and Madanat (2002, p.526) define the problem as, “given a known deterioration curve and rehabilitation 
effectiveness, what is the frequency and intensity of pavement rehabilitation activities that minimises the 
discounted social (agency plus user) cost over a long planning horizon”. The rehabilitation time that is 
optimised is sometimes a single instance between time zero and a given time for the second rehabilitation, or 
a uniform time interval between rehabilitations over an infinite time horizon, or a series of treatment times. 
Models with single rehabilitation treatments and deterioration curves are unable to capture the effect of 
reseals on deterioration rates, illustrated in Figure 2.2 in Chapter 2. 
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Table 4.1 Models with continuous pavement condition 

Article Objective function 
Non-technical 
constraints 

Optimisation 
method 

Treatment 
types 

Pavement 
condition 

Analysis period 
(years) 

Time 
Segments
/ families 

Deterministic models 

Mahoney et al. 
1978 

max gains of pavement 
rating points times survival 
probabilities 

undiscounted budget 
& resource 

integer 
programming 

7 PCR 1 disc 15 

Büttler & 
Shortreed 1978 

max benefit as a function of 
smoothness 

none then budget per 
time period 

optimal control cont function 
riding 
comfort 
index 

variable cont 1 

Friesz & 
Fernandez 1979 

max net benefits (effectively 
min PVTTC) 

none optimal control 1 PSI variable cont 1 

Markow & Balta 
1985 

max net benefits (effectively 
min PVTTC) 

none optimal control 1 PSI one rehab cont 1 

Bhandari et al. 
1987 

min PVTTC 
none, then average 
annual budget 

full enumeration 
30 policy 
alternatives 

IRI 25? disc na 

Hajek & Phang 
1988 

max years in which 
pavement performance 
above acceptable level x 
segment length, then former 
weighted by traffic, then 
area under PCI curve 

annual budget 
linear programming 
& mixed integer 
linear programming 

3 PCI 5 disc 134 

Fwa et al. 1994b min PVAC annual budget genetic algorithm 3 various 20 disc 45 

Tsunokawa & 
Schoffer 1994 

min PVTTC none optimal control cont function QI infinite cont 1 

Fwa et al. 1996 min PVAC none genetic algorithm 9 PSI 20 disc 20 

Pilson et al. 1999 

max best performance 
indicator & min 
undiscounted agency cost 
** 

none genetic algorithm 3 0-1 scale 25 disc 1 
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Article Objective function 
Non-technical 
constraints 

Optimisation 
method 

Treatment 
types 

Pavement 
condition 

Analysis period 
(years) 

Time 
Segments
/ families 

Abaza 2002 

min 'PLC disutility' (ratio of 
PLC cost including initial 
construction, then max 
maintenance & rehab to 
area under PLC 
performance curve) 

none 
trial & error for 1 to 
6 rehabs over 
analysis period 

1 PSI 
variable 
(integer number 
of cycles) 

cont 1 

Li & Madanat 
2002 

min PVTTC none differentiation 1 QI one rehab cont 1 

Tsunokawa & Ul-
Islam 2003 

min PVTTC none full enumeration 
8 overlay 
thickness 
options 

IRI 40 disc 288 *** 

Wang et al. 2003 
max treatment effectiveness 
& min disturbance to road 
users ** 

annual budget & 
minimum condition 

mixed integer 
programming 

5 score 5 disc 10 

Ouyang & 
Madanat 2004 

min PVTTC 
average annual 
budget 

mixed integer 
nonlinear 
programming & 
greedy 

1 QI 60 disc 3 

Ouyang & 
Madanat 2006 

min PVTTC none authors' method 1 QI 100 cont 1 

Tsunokawa et al. 
2006 

min PVTTC none gradient method 
variable 
overlay 
thickness 

IRI 20 disc 1 

Ul-Islam & 
Tsunokawa 2006 

min PVTTC none gradient method 
variable 
overlay 
thickness 

IRI 25 disc 1 

Scheinberg & 
Anastasopoulos 
2010 

min undiscounted agency 
cost or max wtg avg 
condition or max % of 
network > threshold 
condition 

Undiscounted budget 
&/or wtd avg condition 
&/or % network > 
condition threshold 

mixed integer 
programming 

8 

critical 
condition 
index &/or 
IRI 

3 disc 4 

Sathaye & 
Madanat 2011 

min PVTTC undiscounted budget 
differentiation & 
greedy 

1 QI one rehab cont 3 
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Article Objective function 
Non-technical 
constraints 

Optimisation 
method 

Treatment 
types 

Pavement 
condition 

Analysis period 
(years) 

Time 
Segments
/ families 

Gu Ouyang 
Madanat 2012 

min PVTTC none numerical methods 2 QI infinite cont 1 

Jorge & Ferreira 
2012 

min PVTTC annual budget not specificied 8 PSI 20 disc 67 

Rashid & 
Tsunokawa 2012 

min PVTTC none optimal control 3 cont IRI infinite cont 1 

Meneses & 
Ferreira 2013 

min undiscounted agency & 
min user costs** 

none genetic algorithm 4 PSI 20 disc 32 

Torres-Machi et 
al. 2014 

max PSI units (area under 
curve) 

none then with PV 
budget 

simulated 
annealing then 
effectiveness/cost 
ratio * 

6 PSI 25 disc 5 

Chen et al. 2015 
max PV benefit & min PVAC 
** 

acceptable pavement 
performance index & 
annual budget 

dichotomic 
algorithm & GA 

not specified 
pavement 
performance 
index 

10 disc 699 

Yepes et al. 2016 max area under PCI curve 
PV budget & annual 
budget 

greedy then 
threshold 
accepting * 

12 asphalt, 
6 concrete 

PCI 25 disc 20 

Probabilistic models 

Jawad & Ozbay 
2006 

min PVTTC none genetic algorithm 3 IRI 30? disc 20 

Gao & Zhang 
2008 

min undiscounted AC & min 
prob of exceeding upper IRI 
bound ** 

upper bound on IRI unspecified linear 4 IRI 5 disc 1 

Ng et al. 2011 min undiscounted AC 
minimum acceptable 
condition scores for 
pavement segments 

integer 
programming 

3 
integer 
condition 
score 

5 & 10 disc 351 

Notes: * in the optimisation method column indicates a two-stage optimisation process 
The numbers in the Treatment types column exclude the null treatment or routine maintenance treatment alone. 
** in the objective function column means bi-objective 
*** 4 economies x 3 traffics x 20 pavement designs =288 
Abbreviations: max = maximise, min = minimise, PV = present value, TTC = total transport cost, AC = average cost, wtd = weighted, avg = average, prob = probability, cont = 
continuous, disc = discrete, rehab = rehabilitation, QI = quarter index, PSI = pavement serviceability index, PCI = pavement condition index, PLC = pavement life cycle  
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The optimisation technique employed by the earliest articles in the continuous pavement condition 
deterministic category was optimal control theory, until it was realised that simpler methods would suffice. 
Friesz and Fernandez (1979) specified maintenance spending as an ongoing amount over time, which may be 
discontinuous (a ‘bang-bang’ control policy that jumps between levels).17 Markow and Balta (1985) used 
optimal control theory to solve for optimal timing for a single rehabilitation event in a finite time period. 
Tsunokowa and Schofer (1994, p. 153) observed that optimal control models with discrete jumps in the state 
variable, that is, the pavement condition improvement following treatment, are cumbersome and without an 
efficient solution procedure. In order to apply optimal control theory, Tsunokowa and Schofer optimised a 
continuous ‘trend curve’ that passed through the mid-point of each jump in the saw-tooth curve (see 
Figure 2.3). Using the same functions and parameters, Li and Madanat (2002) found that the ‘trend curve’ 
approximation of Tsunakowa and Schofer (1994) yielded sub-optimal policies. They argued that optimal 
control theory was unnecessary provided that the deterministic pavement deterioration and improvement 
models have the Markov property, that is, history does not influence system evolution. In other words, the 
deterioration rate and amount of improvement from a treatment at any point in time depends only on the 
pavement condition and decisions made at that point in time (or in the preceding period for discrete time). 
Despite the criticism from Li and Madanat (2002), Ul-Islam and Tsunokawa (2006) and Rashid and Tsunokawa 
(2012) again used the trend curve approach. 

Li and Madanat (2002) found that, with an infinite time horizon, after the first rehabilitation, the system 
enters a steady state with a constant time interval between rehabilitations and constant roughness level at 
which the rehabilitations occur. With a finite time horizon, Ouyang and Madanat (2004 and 2006) found that 
the steady state was reached after just a few rehabilitations and stayed there until near to the end of the 
planning horizon. With identical pavement lifecycles, only the optimal time for a single cycle needs to be 
determined. These steady state models are similar to our simple model in Chapter 3, with a single treatment 
type and no change in user costs over time due to traffic growth. Abaza (2002) allowed for an integer number 
of rehabilitations between full reconstructions, effectively two treatment types, with each rehabilitation 
restoring the pavement to a lower condition than the previous one. Generally, treating time as discrete, 
rather than continuous, is much simpler and better suited to numerical solution (Belman 1961, p. 5). 

Some models make treatment intensity a variable to be optimised. More intense treatments involve thicker 
overlays that improve road condition to greater degree but cost more. An upper limit is placed on overlay 
thickness, where it ceases to have any further effect on roughness. Treatment cost is made a linear function 
of overlay thickness. It seems that models of this type almost invariably find that the optimal strategy is a 
‘corner solution’ rather than an intermediate standard that balances the marginal cost and marginal benefit of 
increasing overlay thickness. One corner solution is to resurface to the best achievable standard (Li and 
Madanat 2002, p. 531; Ouyang and Madanat 2006, p. 772). The other corner is to apply a very thin overlay in 
each time period. To prevent corner solutions with eight overlay thickness options, Tsunokawa and Ul-Islam 
(2003, p. 198), using the HDM-4 model, imposed a 5-year minimum overlay interval in the simulations “to 
avoid two consecutive condition-responsive overlays from being applied in an impractically short period of 
time”. 

Gu et al. (2012) showed that this conclusion does not apply where ‘maintenance activities’ such as crack 
sealing, are introduced into the model. Increased spending on ‘maintenance activities’ reduced the 
deterioration rate, which in turn postponed the economically optimal resurfacing time. The model then had 
to find an optimal trade-off between the intensities of two types of treatment, in this case, resurfacing and 
other ‘maintenance activities’. 

All the articles cited so far in this section on deterministic models with continuous pavement condition deal 
with a single segment in isolation without budget constraints. Sathaye and Madanat (2011) considered the 
case where rehabilitation treatments were optimised for multiple segments over an infinite time horizon 

---------- 
17  Another unusual feature of Friesz and Fernandez (1979), which is shared by Abelson and Flowerdew (1975), is inclusion of a 

demand relationship. Pavement condition affects traffic demand so that a better maintained pavement gives rise to a benefit from 
generated demand. This contrasts with the argument in Chapter 3, Section 3.2 that, over the relevant range of road conditions, 
effects on traffic demand are likely to be negligible and so can be omitted from models. 
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subject to a budget constraint for the annual maintenance costs summed over all segments. The decision 
problem was to minimise 

 ∑ 𝑃𝑉𝑇𝑇𝐶 =
𝑗

∑
(𝑀𝑗 + 𝑈𝑗)

(1 − 𝑒−𝑟𝜏𝑗)𝑗
 subject to ∑

𝑀𝑗

𝜏𝑗𝑗
≤ 𝐵  

where the subscript j represents each segment, 𝑃𝑉𝑇𝑇𝐶 is the present value of total transport costs as defined 
previously in Chapter 3, M is rehabilitation cost, U is user cost between cycles, τ is the number of years 
between rehabilitations, and B is the annual budget assumed constant for all years. 

The constrained minimisation problem can be expressed as minimising 

𝐿 = ∑ 𝑃𝑉𝑇𝑇𝐶 + 𝜆 (∑
𝑀𝑗

𝜏𝑗𝑗
− 𝐵)

𝑗
 

where λ is the Lagrange multiplier. 

Assuming that the budget constraint is binding, “the optimal solution occurs where the marginal social benefit 

with respect to expenditure is equal for all j. … optimal values for − 𝑑𝑃𝑉𝑇𝑇𝐶𝑗 𝑑(𝑀𝑗 𝜏𝑗⁄ )⁄  for all j will be equal 

to the Lagrange multiplier λ” (Sathaye and Madanat 2011, p. 1006). To solve a numerical example with three 
segments, they adjusted the trigger roughness level at which rehabilitation occurs for each segment so as to 

equate − 𝑑𝑃𝑉𝑇𝑇𝐶𝑗 𝑑(𝑀𝑗 𝜏𝑗⁄ )⁄  for all segments. Sathaye and Madanat’s approach is a precursor to the 

optimisation method in this report for minimising PVTTC subject to annual budget constraints set out 
theoretically in Chapter 3 and demonstrated with the case study in Chapter 6. 

4.3.1.2 Continuous pavement condition and probabilistic category 

There is a large stochastic element in pavement deterioration caused by unpredictable and unmeasurable 
factors. Examples are the quality of the materials and workmanship in constructing and maintaining the 
pavement and drains, the characteristics of the sub-grade, the weather, and heavy vehicle loadings. There is 
also uncertainty about the effectiveness of maintenance treatments specified in models, that is, the amount 
by which they improve pavement condition measures (Qiao et al. 2018). If a deterministic deterioration 
algorithm is well calibrated, it should approximate the expected value of the probability distribution at each 
point in time. If probability distributions were assumed for one or more of the parameters that affect 
deterioration rates and treatment effectiveness, probability distributions for road condition measures and 
forecast spending needs could be derived. As with all forecasts of stochastic variables, the variance of the 
distribution of forecast outcomes would increase the further the system is projected into the future. 

The list of probabilistic models with continuous pavement condition in Table 4.1 is short. One reason may be 
that, for a collection of road segments considered together, the expected outcome from a probabilistic model 
averages out to approximately the outcome from a deterministic model, so there is little to be gained by 
making the model probabilistic. Another reason is the analytical difficulty of managing such models using 
simulation methods due to the large number of possible outcomes to be modelled. 

Li and Madanat (2002) undertook a simulation for a model with a single rehabilitation treatment type and 

simple deterioration function, 1.92𝑒0.05𝑡 m/km IRI (5.1% increase each year). 18 Varying the 0.05 coefficient 
uniformly over the interval 0.03 to 0.07, they did not find any significant change in the optimum (PVTTC-
minimising) roughness level at which to rehabilitate the pavement. They concluded that their approach was 
“robust to the uncertainty in the deterioration process” (Li and Madanat 2002, p. 534). 

Some articles solved specific problems involving probabilities that could not be addressed with a deterministic 
model. Gao and Zhang (2008) used ‘robust optimisation’ to identify options for the decision maker whereby 
higher agency costs could be accepted for a lower probability of violating a maximum roughness target. Ng et 
al. (2011) employed integer programming to find the set of treatment times and types that would minimise 

---------- 
18 Li and Madanat (2002) used the Quarter Index (QI) roughness measure. We have converted 25QI to 1.92m/km IRI using the 

relationship in Paterson (1986), 1 IRI = 13 QI. 
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undiscounted agency costs over the analysis period subject to a constraint that pavement condition would 
only fall below a minimum level with a specified probability. Their case study suggested that budget 
requirements can be more than twice the amount predicted by a deterministic model. With uncertainty about 
the effectiveness of each treatment and the amount of deterioration each year, it is necessary to implement 
more intense and more frequent treatments to meet the probabilistic pavement condition constraint. 

These models highlight that fact that, seeking to minimise agency costs subject to minimum road condition 
constraints with a deterministic model will mean that, in practice, the condition of some segments of a 
network will fall below the constraint because of randomness in treatment effectiveness and pavement 
deterioration. Condition constraints may have to be set higher to allow for this, which will increase road 
agency costs. However, also in practice, decisions about treatments will be undertaken dynamically in 
response to new information becoming available. Being able to update the optimal strategy in response to 
new data from pavement inspections is a desirable feature of any pavement management system (Carnahan 
1988, pp. 309-10). For a network of segments considered together, the additional costs of bringing forward 
treatments for segments in worse condition than forecast would be offset, at least in part, by cost savings 
from deferred treatments for segments in better condition than forecast. 

4.3.2 Discrete pavement condition group — Table 4.2 

Although the main measures of road condition (roughness, cracking, pavement strength and rutting) are 
continuous variables, in many optimisation models, road condition is treated as a discrete variable. For 
example, a pavement might be classed as either ‘very poor’, ‘poor’, ‘fair’, ‘good’, or ‘very good’ based on 
ranges of roughness and possibly in combination with one or more other condition measures, or visual 
inspection. Having a small number of discrete road condition states can greatly simplify optimisation and is 
essential for the Markov chain approach. Table 4.2 indicates that numbers of discrete states in the models in 
the literature surveyed ranges from 3 to 120. A state is defined as a combination of the specific levels of 
variables relevant to evaluating pavement performance (Golabi et al. 1982, p.10). A common discrete 
approach used with Markov models is to have ten states obtained by dividing the zero to 100 scale of the 
pavement condition index (PCI) into ten equal intervals. 

According to Carnahan et al. (1987, p. 557), PCI determination can be subject to errors of up to ±5, so a more 
detailed state definition may be pointless. The models with higher numbers of states had states defined by 
different combinations of attributes such as bands of roughness and cracking. 

4.1.1.1 Discrete pavement condition and deterministic category 

Deterministic probabilistic models with discrete pavement condition are rare, with only three shown in 
Table 4.2. The reason may be that, with pavement condition taking on a limited number of discrete states, it is 
not analytically difficult to switch from a deterministic model to a probabilistic Markov model. 

One of the earliest attempts at road maintenance optimisation for a network was made by Abelson and 
Flowerdew (1975) for roads in Jamaica. They relied on manual calculation of discounted costs over a 10-year 
analysis period to compare alternative maintenance strategies for roads in different condition states with 
different traffic levels to develop operating rules. The sum of road maintenance, vehicle operating and ‘lost 
traffic’ costs was minimised. It is unusual to include lost traffic, that is, traffic deterred by higher operating 
costs as road deteriorate. Lost traffic was valued at half the increase in vehicle operating costs consistent with 
the ‘rule-of-half’ used in cost–benefit analysis for consumers’ surplus changes (ATAP 2022). Abelson and 
Flowerdew discussed how dynamic and integer programming might be applied to more complex models using 
computers. Commenting on their article, Gerchak and Waters (1978) suggested inclusion of traffic delay costs 
and a probabilistic Markov chain approach. 

The modelling approach in de la Garza et al. (2011), while deterministic has all the characteristics of Markov 
approaches except that each pavement state deteriorates to a single pavement state rather than into multiple 
pavement states with different probabilities that sum to one. 
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Table 4.2 Models with discrete pavement condition 

Article Objective function 
Non-technical 
constraints 

Optimisation 
method 

Treatment 
types 

Pavement 
condition 

Analysis period 
(years) 

Segments/familie
s 

Deterministic 

Abelson & 
Flowerdew 
1975 

min PVTTC none 

full enumeration 
to develop rules 
for various 
condition states 

7 road classes 10 na 

Tack & Chou 
2002 

max average PCI annual budget 

dynamic 
programming, 
and genetic 
algorithm 

3 
10 states by 
PCI 

5 
5, 10, 20, 40 
tested 

de la Garza et 
al. 2011 

min number of lane 
miles in the 3 worst 
condition states less 
the weighted sum of 
lane miles in 2 best 
states, then budget 

various 
linear 
programming 

8 5 states 15 1* 

Probabilistic (all with Markov chain approach) 

Golobi et al. 
1982 

min PVAC 
minimum 
performance 
standards 

linear 
programming 

16 
120 states 
**** 

5 9* 

Carnahan et al. 
1987 

min undiscounted AC 
minimum standard 
in final year with 
95% probability 

dynamic 
programming, 

5 
8 states by 
PCI 

20 1* 

Feighan et al. 
1988 

min expected PVAC 
minimum 
performance 
standards 

dynamic 
programming, 

3 
7 states by 
PCI 

25 4* 
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Article Objective function 
Non-technical 
constraints 

Optimisation 
method 

Treatment 
types 

Pavement 
condition 

Analysis period 
(years) 

Segments/familie
s 

Feighan et al. 
1989 

max average PCI units 
none then annual 
budget 

dynamic 
programming, 
then weighted 
effectiveness/cost 
ratio * 

3 10 states 5 5* 

Grivas et al. 
1993 

min PVAC 
annual budget and 
overall network 
condition 

linear 
programming 

7 but limited 
to 2 per 
condition 
state 

45 states 5 and 10 
6* = 2 pavement 
types x 3 traffic 
levels 

Butt et al. 1994 
max PCI units (area 
under curve) 

none then annual 
budget 

dynamic 
programming, 
then weighted 
BCR & IBCR * 

3 10 states 5 13* 

Ravirala & 
Grivas 1994 

min wtg sum of 
deviations of objective 
functions from their 
respective goals *** 

none 
linear 
programming 

3 3 states 1 4* 

Mbwana & 
Turnquist 1996 

min PVTTC annual budget 
linear 
programming 

4 10 states na 60 

Li, Huot & 
Haas 1997 

max cost effectiveness annual budget prioritisation 4 10 states 10 18 

Davis. & Van 
Dine 1988 

min user costs (UC) 

annual (max &/or 
min) or total 
budget, production 
capacity (max &/or 
min) 

linear 
programming 

4 10 states 5 12* 

Li, Hass & 
Huot 1998 

max effectiveness 

annual budget, 
minimum 
performance 
standards 

integer 
programming 

2 PCI units 5 5 
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Article Objective function 
Non-technical 
constraints 

Optimisation 
method 

Treatment 
types 

Pavement 
condition 

Analysis period 
(years) 

Segments/familie
s 

Abaza & Ashur 
1999 

max (min) prop of 
pavements in given 
good (bad) state / max 
wtd avg pavement 
condition / min 
undiscounted agency 
cost st pavement 
condition levels 

annual budget 
penalty method 
with pattern 
search 

3 5 states 6 120* 

Durango & 
Madanat 2002 

min PVTTC none adaptive control * 7 
8 states by 
PCI 

25 1* 

Abaza et al. 
2004 

max (min) prop of 
pavements in given 
good (bad) state / max 
wtd avg pavement 
condition / min 
undiscounted AC st 
pavement condition 
levels 

annual budget 
various non-linear 
techniques tested 

6 5 states 6 1* 

Abaza & Murad 
2007 

max pavement condition st budget 
constraints / min restoration cost st condition 
constraints 

linear 
programming 

8 6 states 
10 (2-yr 
intervals) 

1* 

Wang et al. 
2007 

max average 
performance rating and 
min agency cost, 
undiscounted sum ** 

min and max 
proportions of 
pavement in low 
and high condition 
states set to 
smooth changes 
over time 

genetic algorithm 5 45 states 5 1* 
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Article Objective function 
Non-technical 
constraints 

Optimisation 
method 

Treatment 
types 

Pavement 
condition 

Analysis period 
(years) 

Segments/familie
s 

Wu & Flintsch 
2009 

max wtd sum of 
percentages of 
pavement in various 
condition states (higher 
weights for better 
states) and minimise 
undiscounted sum of 
agency costs ** 

min proportion of 
pavement in 
lowest state and 
weighted sum of 
proportions in 
each state; max 
proportion of 
network treated 
each year 

not specified 
 

3 4 states 10 1* 

Gao et al. 2012 

min average annual 
cost and max average 
proportion of network in 
very good condition 
state ** 

annual budget and 
proportion of road 
network in first 
condition state 

linear 
programming 

3 5 states 10 1* 

Yeo et al. 2013 min PVAC 
minimum service 
levels and annual 
budget  

dynamic 
programming, 
then pattern 
search * 

2 5 states 40 20 to 2000 tested 

Medury & 
Madanat 2014 

min PVTTC annual budget 
Monte-Carlo 
simulation 

3 8 states 15 10 to 1000 tested 

Notes:  The time column in Table 4.1 has been omitted from Table 4.2 because all models are discrete. 
* in the optimisation method column indicates a two-stage optimisation process. ** in the objective function column means bi-objective. *** multiple, goal programming, 35 goals 
**** vector of four characteristics: cracking, change in cracking since previous year, roughness, index to the first crack 
* in the segments/families column means multiple initial condition states for each segment or family 
Abbreviations: max = maximise, min = minimise, PV = present value, st = subject to; TTC = total transport cost, UC = user cost, wtd = weighted, avg = average, prob = probability, PCI 
= pavement condition index 
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4.1.1.2 Discrete pavement condition and probabilistic category 

All the models in the literature with discrete pavement condition and probabilistic pavement deterioration 
use the Markov chain approach due to its ability to integrate pavement deterioration and treatment effects 
into a single transition probability matrix (de la Garza et al. 2011, p. 700). Golabi et al. (1982) was the first to 
implement this approach for road maintenance optimisation.  

A stochastic process is considered a ‘Markov process’ if the probability of a future state in the process 
depends only on the current state and on actions taken in the immediately preceding period, not periods 
further in the past. A Markov chain is a series of transitions between states having the Markov property. 

Central to Markovian pavement performance modelling is the specification of Transition Probability Matrixes 
(TPMs) that indicate the probability that a pavement in each state will change to another state. Transition 
probabilities are obtained from past data or expert judgement (Li Haas and Xie in TRR et al. 1997, p.71; 
Morcous and Lounis 2005, p. 131).19 In the absence of any treatment, a pavement can only remain in the 
same state or deteriorate to a lower state. It can never rise to a higher state. Pavement condition is unlikely to 
decrease by more than 10 PCI units in a single year (Carnavan et al. 1987, p. 557). Hence, it is often assumed 
that a pavement cannot deteriorate by more than one state in a single time period (Ortiz-Garcia et al. 2006, 
p. 142). A maintenance treatment will cause a rise to a higher state. A different transition matrix is required 
for each treatment type including the null treatment. 

Traditionally, TPMs are treated as being homogenous (stationary), that is, the road network will always 
deteriorate according to a fixed TPM. There is an implicit assumption that traffic and environmental 
conditions stay constant throughout the analysis period, which is not plausible for most real-world pavement 
situations (Li et al. 1996, p.204 and 1997b, p.9). Higher traffic loads and less favourable environmental 
conditions will increase the probabilities of deterioration. The problem can be addressed by using a non-
homogenous (non-stationary) Markov process where the TPM changes over time. 

The probabilities in a TPM can be interpreted as the proportion of pavements in a given initial state that will 
transition to each possible final state. Most of the case studies listed in Table 4.2 (starred in the 
‘segments/families’ column) have the entire network or each family of segments with similar characteristics 
(traffic level, pavement type, deterioration rate) divided up by length between the various states at the start 
of the analysis period. The proportions of length in different states change each year. Two individual pieces of 
the road could be grouped together in the same state for one year and separated into the different states the 
following year, and vice versa. 

The majority of Markov models estimate the fraction of pavement segments in a particular state to which a 
particular treatment is to be applied (Ng et al. 2011, p. 1327). In other words, the treatment 
recommendations need not be ‘pure’ strategies. A pure strategy would be: ‘undertake treatment a when in 
state i’. The recommended treatment strategies are usually ‘randomised’, that is, ‘when in state a, undertake 
treatment a1 with probability p1 and treatment a2 with a probability p2’. The probabilities can be interpreted 
as the proportions of lane-kilometres in state i for which treatments a1 and a2 are to be undertaken (Golabi et 
al. 1982, p. 15). Hence, the majority of Markov models cannot be used for planning maintenance on specific 
roads, such as segment X needs treatment Y in year Z. They are typically applied for estimating long-term 
budgets and making needs projections at the network level. 

There are exceptions in the literature where a Markov model has been employed to determine optimal 
treatments for individual pavement segments, for example, Mbwana and Turnquist (1996). But even then, the 
model outputs are a set of recommended actions for each segment, one for each possible pavement 
condition state. Their approach was criticised by Wang et al. (2003, p. 2) for its complexity and assumptions. 

---------- 
19 Khan et al. (2014) describe six ways to obtain TPMs from past data. An early example is Butt et al. (1987) who used constrained 

least squares. 
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4.3.3 Comparisons between discrete probabilistic and continuous 

deterministic models 

There are differing views in the literature about the advantages and disadvantages of the two large categories 
in Tables 4.1 and 4.2, — deterministic models with continuous pavement condition and probabilistic models 
with discrete pavement condition. 

Probabilistic models explicitly recognise the uncertainties in pavement deterioration. Carnavan et al. (1987, 
p. 556) argue that the Markov process seems superior to ‘curve-fitting’ approaches because it “introduces a 
rational structure for interpreting road condition data”. Markov models start with current pavement condition 
data. It is not simple to fit a curve to current pavement condition when the actual current condition differs 
from what the model predicts given data inputs such as pavement age, initial pavement strength, cumulative 
standard axle loads and environmental conditions. An example would be data for a road segment indicating a 
relatively young pavement but with high roughness, inconsistent with the relationships in a deterministic 
model whereby only older pavements can have high roughness values. 

Markov models work well with large-size networks when used to make projections for maintenance needs at 
network level (Morcous and Lounis 2005, p.131).  

Ferreira et al. (2002b, p. 95) argued that probabilistic models lack solid theoretical foundations, in other 
words, they are purely empirical. Durango-Cohen (2007, pp. 494-5) criticised models that make condition a 
discrete variable on the grounds that “the partitioning process introduces forecasting errors and uncertainty”. 
Both sources pointed out that Markov models have limited flexibility to add variables that describe pavement 
condition (for example, in addition to roughness, the type and extent of cracking, rut depth, profile, extent of 
surface patching). Adding variables to a Markov model causes computational effort to increase exponentially 
— the ‘curse of dimensionality’ discussed just below. For example, in Wang et al. (2007), three roughness 
levels (low, medium and high), three cracking levels and five index-to-first-crack measures gave rise to 45 
condition states. Durango-Cohen (2007, pp. 494-5) further referred to empirical studies in pavement and 
bridge management that show that “physical deterioration of transportation infrastructure may not be 
Markovian” [italics in original]. According to Ferreira et al. (2002b, p. 95), these reasons possibly explain why 
road agencies often prefer pavement management systems based on deterministic pavement performance 
models rather than probabilistic models. 

A number of studies have investigated the relationship between deterministic and probabilistic prediction 
models in pavement management. For example, Li et al. (1997a) developed a method to convert a 
deterministic model into a Markov model. Bekheet et al. (2008) compared the performance of a deterministic 
pavement prediction model and a Markov-based system. Validation was made of both systems against actual 
measured pavement condition data. The results showed that both systems performed well. 

4.4 Objective function and constraints 

4.4.1 Objective function 

As discussed in Chapter 3, minimising the present value of total transport costs without budget or binding 
minimum standards constraints yields the most economically efficient solution. Of the 30 articles in Table 4.1 
with continuous pavement condition, 15 minimised the present value of total transport costs. Only four of the 
23 articles in Table 4.2 did this, showing it is relatively rare for models with discrete pavement condition. 
Seven articles of the 53 minimised the present value of agency costs and a further five did so without 
discounting. All those that minimised agency costs had minimum pavement condition constraints, which is the 
cost-effectiveness analysis approach discussed in Chapter 3. The full summary of objective functions in 
Tables 4.1 and 4.2 is shown in Table 4.3. 

Many of the other articles listed optimised pavement performance or condition measures, reflecting the 
engineering frame of reference in the literature. Several maximised ‘effectiveness’ defined as the area under a 
performance curve (pavement condition as a function of time) multiplied by traffic level and segment length. 
This may or may not be time discounted. Multiplying by traffic level mirrors user costs being proportional to 
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traffic numbers. One of the earliest maintenance optimisation articles, Mahoney et al. (1978) maximised gains 
of pavement rating points times survival probabilities. Morscous et al. (2005, pp. 132-3) discussed setting up 
the problem as maximising average network condition given annual budget constraints. They did not address 
how to differentiate between roads with different traffic levels. Davis and Van Dine (1988) was unusual in 
minimising user costs subject to road agency budget constraints.20  

Table 4.3 Summary of objective functions in literature survey 

Table Min PVTTC Min PVAC Min AC Min AC and other Other Totals 

4.1 15 3 1 3 8 30 

4.2 4 4 1 0 14 23 

Totals 19 7 2 3 22 53 

Note: Min = minimise, AC = undiscounted agency costs, Min AC and other = multiple objectives including undiscounted agency 
costs. 

The lack of discounting in many objective functions also shows an absence of consideration of economic 
principles. 

4.4.2 Constraints 

Of the articles with continuous pavement condition in Table 4.1, 16 optimised without budget constraints but 
only four in Table 4.2 with discrete pavement condition. Budget constraints can be expressed in terms of a 
present value, an undiscounted sum over the analysis period, an average annual amount, or a series of annual 
amounts that can be uniform over time or varying. Annual budget constraints occur in seven articles in 
Table 4.1 and 12 articles in Table 4.2. 

Condition constraints can be expressed as single pavement condition measures, average condition for a 
network, or the proportion(s) of a network meeting a condition. The latter occurs in Markov models, where a 
condition constraint can be expressed as a probability that a pavement segment will not fall below a given 
state. A constraint that an x% probability that the condition of any given segment will be above state y can be 
interpreted as x% of lane-kilometres must be kept in conditions above state y (Golabi et al. 1982, p. 10). 

Availability of physical resources to undertake certain treatments (manpower, equipment and materials) may 
lead to further constraints (Chan et al. 2001). For example, Davis and Van Dine (1988) included in their 
maintenance optimisation model, minimum and maximum amounts of each treatment that could be 
deployed in each year. The minimums were “introduced to avoid a solution that calls for extreme shifts in 
pavement material production from year to year”. 

Technical restrictions may be necessary to prevent unrealistic solutions. The purpose could be to prevent 
models extrapolating relationships beyond the range over which they apply. Road safety considerations might 
lead to setting upper limits on roughness, rut depth and skid resistance. 

4.4.3 Multiple objectives 

A number of later articles adopt multiple objective approaches. ‘Multi-objective programming’ identifies the 
Pareto frontier along which no objective can be advanced except at the expense of one or more of the others. 
Tables 4.1 and 4.2 contain eight examples of bi-objective studies. The most common bi-objective approach is 
to minimise agency costs together with either minimising user costs (for example, Meneses and Ferreira 2013) 
or maximising a road condition indicator (for example, Wu and Flintsch 2009). To reconcile maximising road 
condition with minimising agency cost, the problem can be written as minimise negative road condition plus 
minimise agency cost (for example, Gao et al. 2012). Wang et al. (2003) maximised treatment effectiveness 

---------- 
20  Fwa et al. (1998, p. 2) listed a number of other objectives for road agencies not already mentioned: maximisation of maintenance 

production, usage of allocated budget, usage of available manpower, and usage of available equipment; minimisation of 
manpower requirements, equipment requirements, and fluctuations in years demand for pavement expenditures. 
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(sum of improvements in pavement condition weighted by length, traffic and years life) and minimised the 
sum of disturbance costs to road users. An example with more than two objectives is Fwa et al. (2000) (not 
listed in Tables 4.1 or 4.2 because it deals with programming routine maintenance activities) with three 
objectives — minimise maintenance cost, maximise work production (days worked) and maximise network 
pavement condition. 

The decision maker has to select the preferred point on the Pareto frontier. If some objectives are tightly 
constrained, that is, the decision maker has no interest in solutions that sacrifice an objective beyond a 
particular level, then some points on the frontier beyond the threshold level can be easily eliminated. 
However, in such cases, the objective could have been treated as a constraint. The multi-objective 
programming approach then has no advantage over optimising a single objective subject to constraints except 
to address the difficulties genetic algorithms (discussed below) have with identifying optimal solutions close 
to or on constraints. 

Multi-objective programming may be advantageous if the constraints are ‘soft’ in the sense of being yet to be 
determined or open to negotiation. Model results can help decision makers and negotiators to understand 
the trade-offs between objectives. Any study that estimates optimal solutions for budget constraints set at a 
number of different levels is effectively locating points on the Pareto curve and could be considered bi-
objective. 

The most common optimisation method for multiple objectives is to maximise or minimise a weighted sum of 
the objective functions for each of the objectives. The weights do not have to sum to one as illustrated in Fwa 
et al. (1998). The optimisation model must be run a number of times with different weights, each run locating 
a new point on the Pareto frontier. Meneses and Ferreira (2013) used a genetic algorithm to identify the 
Pareto curve for the trade-off between undiscounted user costs and undiscounted agency costs summed over 
a 20-year analysis period. Points on the curve were found by minimising total weighted sums of user and 
agency costs attaching different pairs of weights that summed to one (that is, minimise w × user cost + 
(1 – w) × agency cost where 0 ≤ w ≤ 1). 

In the case of the goal programming approach of Ravirala and Grivas (1994 and 1995) and Ravirala et al. 
(1997), the aim was to minimise the weighted sum of deviations from the specified goals, for example, 
spending in each geographical division and percentages of mileage in each condition class in each division. 
This is not optimisation in the strict sense of the term as the goals are targets to be achieved rather than 
quantities to be maximised or minimised. The goals achievement method will locate a point on the Pareto 
frontier when the target point is set above the frontier. However, there is a risk that the target point may be 
set below the Pareto frontier and the model solves for an inefficient solution.  

4.5 The curse of dimensionality 

All attempts at maintenance optimisation at the network level face the ‘curse of dimensionality’ or 
‘combinatorial explosion’ (Chan et al. 1994, p. 694; Pilson et al. 1999, p. 42; Abaza et al. 2001, p. 493).21 
Increasing the number of treatment types, segments in the network, and years in the analysis period 
increases the number of possible solutions exponentially. 

Treating time in years as a discrete variable, the number of potential solutions for a single segment with S 
treatment types plus the null treatment option over an analysis period of T years is (S + 1)T. This might be 
manageable for a single segment, but single segments cannot be optimised in isolation once annual budget 
constraints are introduced. Spending on one segment in one year reduces funds available for all other 
segments in that year.22 Letting N be the number of segments, the number of potential solutions is (S + 1)T × N 
(Golroo and Tighe 2012, p. 328; Fwa et al. 1996, p. 246). 

---------- 
21  The term ‘curse of dimensionality’ was introduced by Bellman (1961, pp. 8, 94 and 197.) when considering problems in dynamic 

programming. The number of samples needed to estimate an arbitrary function with a given level of accuracy grows exponentially 
with respect to the number of input variables (i.e. dimensionality) of the function. 

22  For a present value budget constraint, the weighting method proposed in Chapter 3 and illustrated in the Chapter 5 case study 
enables individual segments to be considered in isolation, but this does not apply for annual budget constraints. 
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Tables 4.1 and 4.2 show that models that are high in one or more dimensions (number of treatment types, 
analysis years, and number of segments) compensate by being low in others. The most complex deterministic 
models with long analysis periods are often applied only to a single segment and may have just one 
rehabilitation treatment. The tables also show examples of models with shorter analysis periods, ten years 
and below, applied to over a hundred segments. Generally, Markov probabilistic models are applied with 
relatively short analysis periods. 

There are ways to reduce dimensionality. The number time periods can be reduced by allowing maintenance 
actions only in specified years, for example, odd-numbered years 1, 3, 5, instead of every year. Only one 
instance of this was found of this in the literature review. Abaza and Murad (2007) assumed a 10-year analysis 
period divided into five time periods. In a few cases, a minimum time interval was set between periodic 
maintenance treatments (Abaza 2002; Tsunokawa and Ul-Islam 2003). Tack and Chou (2002 pp. 5-6) imposed 
a 4-year minimum allowable time constraint between major maintenance treatments (‘frequency constraint’), 
as well as best and worst condition constraints for particular treatment types (‘application constraints’). They 
noted that frequency and application constraints significantly reduced the number of treatment combinations 
to test. As mentioned above, treatment frequency constraints may also be imposed to prevent a corner 
solution where treatment intensity is variable. 

The number of segments to be analysed can be reduced by aggregating segments into ‘strategic sections’ or 
‘families’ with similar characteristics in terms of ranges of one or more of pavement condition measures, 
parameters in the deterioration algorithm (calibration and environmental coefficients), traffic level and 
vehicle mix.23 Earlier models required high levels of aggregation, due to limited data and computing power. As 
data availability and computing technology have improved, there has been a trend toward greater 
disaggregation. Highly aggregated models can only produce maintenance policies — general guidance as to 
which treatments to undertake when and under which circumstances — not recommendations for specific 
individual road segments. Taking length-weighted averages of characteristics of small segments of road, when 
aggregating into larger segments, hides pieces of road in poor condition that may need treating sooner than 
predicted for the aggregated segment, leading to underestimation of future maintenance needs. 

Having a short analysis period dramatically reduces the number of potential solutions but, as discussed in 
Chapter 3, due to treatments in the far future affecting the value of treatments in the near future, the length 
of the analysis period can affect results. Without a residual value or depreciation amount or a minimum 
condition constraint, the model has an incentive to allow a pavement to run down towards the end of the 
analysis period. It is not surprising then to find that the models with short analysis periods usually either have 
maximisation of some measure of pavement condition as their objective function or have minimum condition 
constraints. 

The number of possible treatment types in the tables, not counting the null treatment option, ranges from 
one to 12. While the model realism can be enhanced by having a greater number of treatment types, it 
increases the likelihood that one or more of the menu of treatment types will never be selected by the model. 
This occurs where a treatment type cannot compete with (is dominated by) another alternative treatment 
type that offers a superior trade-off between effectiveness and cost. This was illustrated in Yepes et al. (2016) 
where no treatment types involving recycling techniques were included in the optimal solution. These 
treatment types were dominated by alternatives that had the same effectiveness (measured in years of 
service life increase) and a lower cost per square metre. The dominated treatments could have been excluded 
from the model with no effect on results.  

Treatments can be considered as a menu of alternatives for which greater effectiveness in improving road 
condition and longevity can be purchased for greater cost. The choice between adjacent treatments in 
ascending order of cost and effectiveness can be very sensitive to their relative cost and effectiveness 
characteristics, so treatment choice becomes largely an artefact of the assumptions made about treatment 

---------- 
23 The term ‘families’ comes from the early road maintenance optimisation literature. According to Butt et al. (1987, p. 13), “A 

pavement family is a group of pavement sections with the same pavement type, the pavement use and the pavement rank.” From 
Carnahan et al. (1987, p. 556), “… pavements are categorized so that roads with similar pavement construction methods, traffic 
loads and geographical location are collected into one class or ‘family’…”. 
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effectiveness and cost. Thus, increasing the number of treatment types in a model can have rapidly 
diminishing returns in terms of value added. 

A way to dramatically reduce the number of possible solutions is to have the model choose between 
condition-responsive treatment rules instead of years in which particular treatments are implemented. An 
example of such a rule would be ‘rehabilitate as soon as roughness reaches 5 m/km IRI and resurface when 
cracking reaches 2% of surface area’. The model could test alternative trigger values for each segment, for 
example, rehabilitate at either 4 m/km, 5 m/km, or 6 m/km IRI. Triggers for different treatment types can be 
grouped together to form ‘maintenance policies’ (ARRB 2014). It is then no longer necessary to consider 
treatment implementation time as a variable to be optimised. Once a trigger is chosen, the implementation 
time for a treatment becomes endogenous to the model. Bhandari et al. (1987) did this to enable 
consideration of 30 policy alternatives for paved roads. 

Use of triggers will be less satisfactory where traffic is growing. Traffic growth alters economically-optimal 
condition triggers because higher maintenance standards tend to be economically warranted for more highly 
trafficked roads. In other words, a trigger level set for a segment over the entire analysis period cannot allow 
for the changing economic value of treatments over time as traffic levels grow. 

4.6 Optimisation methods 

4.6.1 Survey of methods 

The studies listed in Tables 4.1 and 4.2 feature a wide variety of optimisation methods. The earliest attempt at 
road maintenance optimisation by Abelson and Flowerdew (1975) used full enumeration to develop rules for 
various condition states for road maintenance in Jamaica over a 10-year analysis period. Since then, many 
techniques have been employed to solve pavement optimisation problems. They include 

• Full enumeration of all possible solutions 

• Mathematical programming methods, such as 

o optimal control theory 
o gradient method 
o linear programming 
o non-linear (including convex) programming 
o integer programming 
o dynamic programming 

• Heuristic methods, such as 

o genetic algorithms 
o pattern search 
o greedy algorithms 
o simulated annealing 
o Monte-Carlo simulation. 

Full enumeration involves computing the net present values of all feasible solutions. It guarantees finding the 
optimal solution (Odoki and Kerali 2006, G1-23). Whether or not it is feasible depends on the number of 
solutions to be evaluated and computation speed. 

Descriptions of the various mathematical programming techniques are widely available and so are not given 
here. Table 4.1 shows that models with continuous pavement condition and continuous time are restricted in 
the types of optimisation approaches available — mainly optimal control and differentiation. For discrete 
time, Tables 4.1 and 4.2 show that linear, integer and dynamic programming are common approaches. In the 
cases of integer and linear programming, whether or not a treatment of a given type is implemented in a 
particular year on a particular road segment can be represented in the objective function as a variable that 
can take on only values of zero or one.  

Generally, while mathematical programming methods provide optimal solutions, they are unable to deal with 
large networks, where the large number of decision variables render computation time impractically long 
(Torres-Machí et al. 2014, p. 5). Ouyang and Madanat (2004, p. 347) observed that mixed integer non-linear 
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programming incurs prohibitive computational costs when the problem scale increases. Tack and Chou (2002, 
p. 8) and Medury and Madanat (2013, p. 137) remarked that the backward recursive dynamic programming 
approach guarantees finding the optimal policy, but suffers the ‘curse of dimensionality’ in that the 
computational costs increase exponentially with the number of possible states and decision options. 

The alternative is heuristic search methods. They can provide satisfactory solutions in a reasonable amount of 
time for optimisation problems where full enumeration and mathematical programming approaches are 
impractical or would take too long. For example, Ferreira et al. (2002a) was able to solve a 27-segment 
problem with a four-year analysis period using mixed integer programming but had to rely on a heuristic 
technique for a 254-segment problem.  

4.6.2 Genetic algorithms 

Tables 4.1 and 4.2 show that genetic algorithms (GAs) tend to be the most common heuristic method 
employed for road maintenance optimisation. They are described here in some detail because one is 
employed in the case study in Chapter 6. They also illustrate characteristics of the broad heuristic family of 
algorithms. 

GAs, first introduced by Holland (1975) and further elaborated by Goldberg (1989), are based on Darwinian 
evolutionary principles. Since the early 1990s, various GA methodologies have been developed to solve 
increasingly complex optimisation problems. The first application to road maintenance optimisation was 
reported in Chan et al. (1994) and Fwa et al. (1994a, 1994b). 

GAs work on a coding of the parameters, not the parameters themselves (Fwa et al. 1994a, p. 31). They 
commence by generating a randomly selected parent pool of feasible solutions. The parameters describing 
each solution are encoded into a genetic representation or ‘chromosome’, which is an array of bits of 
information. Parent chromosomes are selected according to their ‘fitness’, usually measured by the objective 
function. The fitter chromosomes are mated to produce offspring, generating a second generation of 
chromosomes. Thus, through an iterative process, where the fitter individuals are allowed to mate more 
often, successive generations grow in fitness. Selection for mating typically involves a random element with 
the fitter individuals having a higher probability of selection. Mating, called ‘crossover’ or ‘recombination’, 
involves two parents swapping bits to produce two offspring. There are a variety of different ways to choose 
which bits to swap, the simplest being all bits to the right of a randomly selected crossover point. 

Along the way, mutations are made to gene pool members to help move out of local optimums. Randomly 
selected bits are altered, for example, by swapping bits between positions or by replacing the value of one bit 
with a new randomly-selected value. Parameters such as the mutation and crossover probabilities and the 
population size can be adjusted to suit the particular problem. A mutation rate that is too low can lead to 
failure to find good solutions further away from those represented in the population pool, while too high a 
mutation rate can lead to loss of good solutions. A crossover rate that is too high can lead to premature 
convergence of the GA to a particular solution, ruling out the possibility of finding alternative good solutions. 

The process continues until a termination condition is reached and the best solution out of all generations is 
chosen. Termination could be set to occur after a given amount of computer run time or a given number of 
generations or a criterion met for the best solution found. Successive trials tend to show diminishing returns 
in the improvements to the best solution out of each generation, so a plot of the best solution from each 
generation tends to plateau. 

GAs differ from traditional optimisation techniques in a number of ways. GAs retain in memory at any one 
time a pool of feasible solutions rather than one single solution. The search process is not gradient-based so 
there is no requirement for differentiability or convexity of the objective function (Fwa et al. 2000). The 
solution found is not guaranteed to be either a local optimum or the global optimum. How close it is to a local 
optimum depends on the termination condition, and there remains the possibility of other local optimums 
that have not been explored. Fwa et al. (1998, p. 4) argued that there exist many near-optimal solutions in a 
pavement management programming problem and these near-optimal solutions are practically as good as the 
optimal solution. 
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GAs have been found to work well for unconstrained problems where all possible solutions are considered 
feasible. However, road maintenance optimisation problems invariably have technical constraints and usually 
resource constraints. For GAs, the most common way to handle constraints is the ‘penalty method’, whereby 
a penalty is imposed on an infeasible solution that reduces its fitness. The penalty is usually a function of the 
extent to which the constraint is violated, for example, the more a solution is over budget, the higher the 
penalty. There are no rules for the form and parameters of the penalty function, but the penalties have to be 
large enough to prevent the population becoming dominated by infeasible solutions but not so large as to 
trap a search in a local optimum, where a single valid but poor solution dominates the population. The 
advantage of a penalty that only disadvantages a constraint-violating solution over the ‘death penalty’ that 
eliminates it from the population pool altogether, is that the pool retains the information contained in the 
constraint-violating solutions. (Chan et al. 1994, p. 702; Pilson et al. 1999, p. 43; Chan et al. 2001, pp. 180-3; 
Yeniay 2005) Other ways to handle constraints are decoder or repair algorithms that avoid creating invalid 
offspring (Fwa et al. 1994a, p. 35). 

Because GAs retain multiple solutions in memory, they are well suited to solving multi-objective problems 
(Konak et al. 2006). As an alternative to the weighting method discussed above for multi-objective 
optimisation, genetic operators can be modified to evolve a set of non-dominated solutions in a single run 
(Deb 1999). Deb (1999) and Konak et al. (2006) discuss some of the problems and design issues with multi-
objective GAs. 

A drawback of heuristic methods is that the analyst does not know how close the best solution is to the 
optimal solution. Ideally, results would be periodically compared with results from a mathematical 
programming method to ensure the solutions are optimal or near-optimal (Zimmerman 1995, p. 11). This is 
practical where the number of potential solutions is not too large. Chen et al. (2015) compared a GA in bi-
objective optimisation with their own ‘dichotomic’ approach and found that that the GA could only identify 
seven solutions on the Pareto frontier when 50 segments were analysed, and one when 400 or more were 
analysed. They concluded that the GA solutions become worse as the number of segments increases. 

4.6.3 Two-stage approaches 

Tables 4.1 and 4.2 feature six articles (starred in the optimisation method column) that employ two-stage 
approaches to managing the problem of dimensionality when optimising subject to annual budget 
constraints.24 Torres-Machí et al. (2014) termed these ‘sequential’ or ‘iterative’ approaches, in contrast to 
‘holistic’ approaches that rely on a single round of optimisation. Medury and Madanat (2014) used the terms 
‘top-down approach’ for a single stage optimisation and ‘two-stage bottom-up approach’. 

In the first stage, each segment is considered in isolation in the absence of budget constraints. Under the 
‘sequential’ approach of Torres-Machí et al. (2014), the optimum solution for each segment in the absence of 
budget constraints was identified in the first stage. Budget constraints were introduced in the second stage. 
Segments requiring maintenance treatments were ranked using a prioritisation method enabling lower-
ranked segments to be progressively excluded up to the point where budget constraints were met.  

Under the ‘iterative’ approach of Torres-Machí et al. (2014) and the ‘two-stage bottom-up approach’ of 
Medury and Madanat (2014), in addition to the best solution for each segment, the second, third and so on 
best solutions were identified for each segment. It was then possible in the second stage to select a second or 
third-best solution for one segment over the best solution for another segment. 

Two-stage approaches can dramatically reduce the number of combinations to be considered. As previously 
explained, with S treatment types plus the null treatment option over T years and N segments, there are 
(S + 1)T × N possible solutions. Two-stage approaches have N(S + 1)T possible solutions in the first stage, 
because there are (S+1)T solutions for each one of N pavement sections (Torres-Machí et al. 2014). Three of 
the six articles identified in Tables 4.1 and 4.2 as using two-stage approaches employed dynamic 

---------- 
24  In classifying of articles as one- and two-stage approaches in Tables 4.1 and 4.2 , multiple objective approaches in which the 

second stage is for the decision maker to choose between alternative points on a Pareto frontier, were classed as one-stage. 
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programming in the first stage, which is feasible for a single segment considered by itself. The others used 
heuristic approaches for the first stage.  

As discussed above, prioritisation methods are unable to find economic optimums over long time spans 
because they consider only the budgetary impact of the earliest treatment of an option consisting of a series 
of treatments in various future years. There is further loss of optimality where the sequential approach passes 
only a single highest priority solution for each segment from the first stage to the second stage. For some 
segments, there may be inferior solutions not retained that are better than the highest priority solutions for 
some other segments. The iterative approach addresses this limitation but still relies on prioritisation. In their 
numerical example, Medury and Madanat (2014) showed that as the budget constraint becomes more severe, 
the single stage approach outperforms the two-stage approach. 

The two-stage approaches in the literature to date offer ways to manage the curse of dimensionality and find 
solutions that are better than many other solutions. However, the solutions are not optimal and it is not 
known how far away they are from the optimum.  

4.7 Conclusion 

With almost all the literature on road maintenance optimisation coming from the civil engineering discipline, 
a minority of articles take the pure economic approach of minimising the present value of total transport 
costs. A small number take the cost–effectiveness analysis approach of minimising agency costs subject to 
road condition constraints. Annual budget constraints are common in the literature. 

Most models in the literature are either deterministic, with pavement condition as a continuous variable, or 
probabilistic, with pavement condition as a discrete variable. The approach in the present report is 
deterministic, with continuous pavement condition. The theoretical discussion in Chapter 3 and the 
optimisation methodology in Chapter 6, for optimisation subject to budget constraints, applies the method of 
Lagrange multipliers, which has only been used once before in the road maintenance literature, by Sathaye 
and Madanat (2011). However, it is practically the same as the penalty method used for treating constraints 
when applying genetic algorithms to maintenance optimisation problems. The Lagrange method is well-
known to economists because of the central role it plays in the mathematical formulation of the micro-
economic theory of consumer and producer behaviour. The present report shows the link between the 
Lagrange multiplier or penalty factor and the marginal benefit–cost ratio. 

A few articles in the literature apply two-stage optimisation approaches to address the curse of 
dimensionality. In the first stage, optimal solutions are identified for individual segments in the absence of 
budget constraints. Budget constraints are introduced in the second stage when a prioritisation method is 
applied. Prioritisation methods are not guaranteed to find optimal solutions. The case study in Chapter 6 
applies a multi-stage approach that does not rely on prioritisation. 
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5. Case study without annual budget constraints  

Summary 

A case study was undertaken using a database of 2034 segments of road with a total length of 
1977 kilometres drawn from the non-urban parts of seven different highways supplied by an Australian state 
government road agency. 

BITRE engaged the Australian Road Research Board (ARRB) to curate the data into a form suitable for 
maintenance modelling, provide HDM-4 calibration information, and to estimate economically optimal 
spending (minimising the present value of total transport costs (PVTTC)) using HDM-4 and their own 
modelling approaches. 

BITRE developed its own model based on simplified HDM-4 pavement deterioration algorithms. The 
optimisation approach was full enumeration of all possible solutions subject to a minimum time interval 
between treatments. With three periodic maintenance treatment types, a minimum of eight years between 
treatments and a 40-year analysis period, there were up to 581,485 solution options for each segment. For 
the first 20 years, economically optimal spending for periodic (excluding routine) maintenance for the whole 
network was estimated at $1505 million, an average annual amount of $75 million. By length, 37% of the 
network would be rehabilitated over the 20 years. First-year optimal spending was estimated at $186 million.  

The case study data was then used to illustrate the cost–effectiveness approach of minimising the present 
value of road agency costs (PVAC) subject to minimum standard constraints in the form of maximum 
permitted roughness levels. The maximum roughness level constraint declined with traffic level and the 
number of heavy vehicles, patterning the relationship between traffic and economically optimal road 
standard. Compared with the economically optimal PVTTC-minimising solution, 20-year spending was lower 
by 18% achieved by halving the amount of the rehabilitation work by road length in the first 10 years. 
Roughness was, on average, higher, which imposes additional costs on road users. Each dollar of PVAC saved, 
on average, cost users $2.30 compared with the PVTTC-minimising economic optimum. 

The unconstrained PVTTC-minimising result implies a marginal benefit–cost ratio (MBCR) of one. Results were 
estimated by raising the MBCR in steps from 1.5 to 25. Increasing the MBCR pushes road agency maintenance 
spending into the future as well as reducing it in total. Setting a target MBCR above one is equivalent to 
minimising PVTTC subject to PVAC constraints except that the penalty factor or Lagrange multiplier is set 
exogenously, and the PVAC constraint is an output of the model rather than an input. The upward adjustment 
to the MBCR to save each additional increment of PVAC is at first gentle as the model initially delays non-
urgent treatments. But the rise soon becomes extremely steep as the model is forced to delay increasingly-
needed maintenance treatments. 

A number of sensitivity tests were undertaken. Raising the discount rate reduced agency spending pushing 
maintenance activities into the future. Failing to include safety in user costs reduced and delayed 
recommended maintenance spending. If computer run times for the model need to be reduced, the 
sensitivity tests showed that it is better to retain the longer 40-year analysis period and skip testing options 
with treatments in some years in the later part of the period than to shorten the analysis period to 30 or 20 
years. 

5.1 Introduction 

Most of the road maintenance optimisation articles reviewed in Chapter 4 feature a case study to 
demonstrate and test their methodologies. In the present report, the case study brings together and 
illustrates many of the concepts discussed in the previous chapters including 

• data requirements and components maintenance optimisation models from Chapter 2 

• the conceptual framework in Chapter 3, including modelling issues such as treatment of budget 
constraints and depreciation at the end of the analysis period, and 
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• optimisation discussed in Chapter 4. 

The case study provided an opportunity to develop and test a multi-stage optimisation method that can 
handle a very large database of road segments. 

The case study is divided into two parts. This chapter (Chapter 5) introduces the case study and presents 
results for minimising PVTTC and PVAC without budget constraints followed by minimising PVTTC with 
present value budget constraints. The more difficult modelling task of optimising subject to annual budget 
constraints follows in Chapter 6. 

An Australian state government road agency supplied a database of road traffic and condition information. 
BITRE engaged ARRB to curate the data into a form suitable for maintenance modelling including adding 
climate data, to provide technical advice, and to model the data themselves (Toole and Roper 2014). ARRB’s 
results for minimising PVTTC without budget constraints are presented in Appendix D and compared with 
BITRE results. The pavement deterioration and user cost algorithms in the case study model have already 
been presented in Chapter 2. Further details of the model are set out in this chapter, including the 
assumptions about maintenance treatments. 

Results are presented in detail for the central scenario of minimising PVTTC without budget constraints in a 
range of ways to show their implications for maintenance activities, spending needs and the condition of the 
road network for the following 20 years. Results are then presented for minimising PVAC subject to maximum 
roughness constraints. 

The method of minimising PVTTC subject to minimum present value budget constraints developed in 
Chapter 3 is illustrated for a range of target MBCRs. 

Sensitivity tests are reported, including tests of ways to reduce computer run times. 

5.2 Case study data 

The case study data consisted of 2034 road segments with a total length of 1977 kilometres of the non-urban 
parts of seven different highways supplied an Australian state government road agency. For undivided roads, 
each segment represented the entire width of the road with lanes in both directions. For divided roads (lanes 
in the two directions separated by a median strip), each direction of the carriageway was represented as a 
separate segment. Individual segments ranged in length from 0.015 to 17.7 kilometres, with an average 
length of 0.972 kilometres. The segments at the low end of the length range were unrealistically short for 
maintenance treatment purposes because it would be uneconomic to apply a major treatment to a short 
length of road in isolation, but short segments were not combined with adjacent segments in order to 
demonstrate modelling with a large database. 

Table 5.1 summarises the traffic and condition measures for the database with length-weighted averages and 
indicators of the range of variation. Average annual daily traffic (AADT) levels ranged from 1,000 to 17,500 
vehicles per day. Some segments were in extremely poor condition with the worst road condition measures in 
the database being cracking at 94%, pavement strength at 2.8 adjusted structural number, and roughness at 
7.6 m/km IRI. The minimum pavement age of 9 years indicates that no segments had been rehabilitated in 
almost a decade. 
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Table 5.1 Case study network characteristics for all segments in year zero 

 Minimum 
50th 

percentile 
Length weighted 

average 
Maximum 

AADT 1018 2829 3468 17,538 

% Heavy vehicles 10% 21% 24% 37% 

Annual light vehicle growth rate (%) 1.4% 1.8% 1.9% 2.4% 

Annual heavy vehicle growth rate (%) 1.9% 2.3% 2.3% 2.6% 

Surface age (years) 0 15 13 29 

% Cracked 0 3% 7% 94% 

Pavement age (years) 9 25 28 37 

Design pavement strength (SNP) 5.3 6.0 6.1 7.3 

Pavement strength (SNP) 2.8 5.1 5.2 6.9 

Rut depth (mm) 1.0 6.0 6.3 19.0 

Roughness (m/km IRI) 1.0 2.0 2.1 7.6 

Notes: Length weighted average = ∑ 𝑤𝑖𝑥𝑖 ∑ 𝑤𝑖⁄  where wi is the length of segment i. 
 50th percentile = 50% of the entire road length in the database was above, and 50% below, the amount shown. 
 AADT = average annual daily traffic, SNP = adjusted structural number, IRI = international roughness index. 

The database lacked data on design pavement strength and measured pavement strength, information that is 
essential for modelling deterioration. Values for design pavement strength were generated by assuming that 
segments were originally constructed or previously rehabilitated to Austroads design standards. Design 
pavement strength was estimated from ‘design traffic’, assumed to be the number of millions of equivalent 
standard axles forecast for the 30 years following construction or rehabilitation (MESA). The design adjusted 
structural number (SNP0) was given by: 

 𝑆𝑁𝑃0 = 4.7 𝑀𝐸𝑆𝐴0.1033 (5.1) 

For the purpose of estimating design pavement strengths, traffic levels were projected backward to the year 
of construction given by the pavement age. To allow for pavement strength to decline over the period 
between construction or the last rehabilitation and the start of the analysis, equation 2.2 in Chapter 2 was 
employed. 

Of the 2034 segments, 493 were asphalt mix pavements and 1541 were surface treatment (sprayed seal) 
pavements, using the two-way classification for bituminous surfaces in HDM-4 (Odoki and Kerali 2006 Part C). 
By length, 164 km (8.3%) were asphalt mix pavements and 1812 km (91.7%) were surface treatment 
pavements. 

5.3 BITRE modelling 

To gain the flexibility to test a range of different approaches to maintenance modelling, BITRE developed its 
own model. The first version was implemented in an Excel workbook with a Visual Basic macro managing the 
progression through the database, one segment at a time, testing all the options, and recording the results. To 
address impractically long run times , the model was recoded in Mathematica, with checking to ensure both 
versions produced identical results. 

Compared with models in the literature, the BITRE case study modelling 

• was deterministic with discrete time intervals of one year 

• minimised PVTTC subject to loose minimum pavement condition constraints imposed to ensure technical 
realism, or alternatively minimised PVAC subject to pavement roughness constraints set to take into 
account the interests of users 
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• treated pavement condition measures as continuous variables. 

5.3.1 Pavement deterioration 

To model pavement deterioration, HDM-4 deterioration algorithms (Morosuik 2004; Odoki 2006) were 
employed, with the addition of ARRB’s relationship for pavement strength as a function of age given in 
equation 2.2 in Chapter 2. The deterioration algorithm was similar to Paterson’s (1987) incremental model in 
equation 2.1 in Chapter 2 whereby the roughness increase in a single year is the sum of roughness increases 
from four processes — cracking, pavement strength decline, potholing and rutting — plus an environmental 
component dependent on climate. The main processes and inputs were illustrated in Figure 2.1 in Chapter 2.  

Cracking was assumed to start (rising above 0.5%) after the surface age reached 12 years for surface 
treatment pavements and 16 years for asphalt mix pavements, by which time the bitumen has begun to 
oxidise. Cracking then proceeded along an S-curve from zero to 100%. Cracking has direct impacts on all the 
other processes. Potholing only commenced at relatively high levels of cracking and potholes were assumed 
to be quickly patched. Pavement strength declined with age and the rate of decline was accentuated for 
cracked pavements and wetter climates. Rutting was affected by cracking, pavement strength, axle loadings 
and climate. From mean rut depth, the standard deviation of rut depth was estimated, which contributes to 
roughness. 

5.3.2 Treatments 

BITRE’s model dealt with periodic maintenance only. Routine maintenance could be estimated as fixed annual 
amounts per square metre of pavement or kilometre of road length outside the model. There were three 
types of treatments, which are shown in Table 5.2 in ascending order of cost per square metre and 
effectiveness in improving road condition. Treatment costs were higher for asphalt mix pavements relative to 
surface treatment pavements. Costs of resurfacing and shape correction increased linearly with the level of 
cracking. Rehabilitation costs rose with the design standard and there was a cost penalty if roughness rose 
above 4.1 m/km IRI at the time of rehabilitation because an additional layer of pavement needed to be 
replaced. The cost of treatments on surface treatment pavements was assumed to transition to the cost for 
asphalt mix pavements above a 30-year design traffic level of 20 million equivalent standard axles (MESA) or a 
design strength of 6.4 for the adjusted structural number. 

Three treatment types may appear few but the literature survey summary Table 4.1 showed it to be mid-
range for deterministic models with continuous pavement condition in the literature. The drawbacks of 
having a high number of alternative treatment types were discussed in Section 4.5.25 

The following technical restrictions were imposed in the model. 

• Resurfacing treatments were not permitted for levels of cracking above 25%. 

• Resurfacing with shape correction treatments were not permitted for levels of cracking above 40%.  

• Roughness was not permitted to rise above 6.3 m/km IRI. 

• Pavement strength was not permitted to fall below an adjusted structural number of 3.0. 

ARRB’s advice was that roughness should not be permitted to exceed 5.2 m/km, that adjusted structural 
number not fall below the maximum of 3.0 and 60% of the design value, and that cracking not exceed 50%. 
There were a significant number of segments in the database already beyond or close to these limits and 
hence would require rehabilitation in the first year of the analysis period if these restrictions were 
implemented. As an aim of the modelling exercise was to explore costs of deferring maintenance, the 
restrictions recommended by ARRB were relaxed to enable greater flexibility to defer maintenance. It was 

---------- 
25 The drawbacks of a greater number of treatment types are: (1) it increases the number of options to test by an exponential 

amount, (2) high likelihood of some treatments never being selected because they are dominated by others, and (3) high 
sensitivity of the choice of treatments to cost and effectiveness assumptions. 
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found that once the model had treated the segments that were initially outside the technical restrictions, 
economic optimisation in subsequent years made the restrictions redundant. 

Table 5.2 Treatment and cost assumptions 

Treatment Description 
Computer code to estimate cost 
($ per square metre) 

Resurface 
ST: 10mm overlay; 

AM: 20mm overlay; 
0.3 * ACA + If [PavementType == “AM”, 26.5, 4.5] 

Resurface with 
shape 
correction 

ST: 20mm overlay; 

AM: 40mm overlay 
0.3 * ACA + If [PavementType == “AM”, 43.5, 26.5] 

Rehabilitation 

Replace layers as required 
to raise pavement strength 
to design level of: Max [5.5, 
4.7 * MESA^0.1033].  

If [SNP > 6.4, 56.3 * SNP – 206.7, 

 If [PavementType == “AM”, 76.8 * SNP – 338, 

 115.6 * SNP – 586.5]] 

 +  

If [IRI > 4.1, 

 If [SNP > 6.4, 9.76 * ( IRI – 4.1), 

  (2.73 * SNP – 7.72) * ( IRI – 4.1)], 

 0] 

Note: Values for ACA, MESA, SNP and IRI are all as at the time just prior to treatment. 
ST = surface treatment, AM = asphalt mix, ACA = per cent cracked, MESA = millions of equivalent standard axles forecast for 
the next 30 years, SNP = adjusted structural number, IRI = m/km roughness. 

Each treatment had ‘reset’ impacts, which are summarised in Table 5.3. All treatments reset surface age and 
cracking to zero. Rehabilitation reset roughness to 1.2 m/km IRI, the level of a new pavement, and raised 
pavement strength to the design level. Resurfacing with shape correction reduced roughness by a significant 
amount, typically by around one m/km IRI. 

Table 5.3 Summary of treatment reset impacts 

 Surface age Cracking Pavement age SNP Rutting Roughness 

Resurface 0 years 0% no change add 0.1 
no 

change 
no change 

Resurface 
with shape 
correction 

0 years 0% no change add 0.2 
subtract 
1.5 mm 

HDM-4 formula; 
approximately 
subtraction of 

1 m/km IRI 

Rehabilitation 0 years 0% 0 years 
required 

design level 
1.0 mm 1.2 m/km IRI 

5.3.3 User costs 

The relationship between roughness and road user costs in the BITRE model was discussed in Chapter 2 and 
illustrated in Figure 2.4. 

5.3.4 Other assumptions 

The analysis period was set at 40 years and the discount rate at 4%. Treatments in the model were assumed 
to be implemented at the end of each year. 

The role of residual value or depreciation as an approximation of the PVTTC for the years after the end of the 
analysis period to infinity was discussed in Chapter 3. The 40-year analysis period pushes the end of the 
analysis period far enough into the future to limit the effects of the finite analysis period on the first 10 or 
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20 years, which are of most interest. In the BITRE model, depreciation was added to road agency costs at the 
end of the analysis period. Depreciation for each segment at the end of the analysis period was calculated 
based on surface age and roughness together with treatment costs. The maximum depreciation was set at the 
cost of rehabilitating a pavement with a roughness of 5.2 m/km and with a design pavement strength set for 
the traffic at the end of the analysis period. The approach to calculating depreciation in the model is described 
in detail in Appendix C. 

5.3.5 Data requirements 

Data fields, including HDM-4 calibration coefficients starting with ‘K’, required by the model were 

• Traffic (average annual daily traffic ( AADT)): car, light/med rigid, heavy rigid, articulated truck, 
combination truck 

• Traffic growth rates (linear projection): light vehicles, heavy vehicles 

• Climate / environment: m (environment coefficient), Kgm, Thornthwaite moisture index (TMI), mean 
monthly precipitation (MMP) 

• Road characteristics: length (km), carriageway width (m), paved area (m2), pavement type (AM/ST), 
divided/undivided/freeway, and 

• Road condition: surface age, cracking (%), Kcpa, pavement age, design and current pavement strengths 
(adjusted structural number), Kgs, rut depth (mm), Krst, roughness (IRI). 

The HDM-4 model requires significant configuration and adaptation to conditions in the country or region for 
which it is to be used. HDM-4 has calibration coefficients that modify the rates of progression of cracking, 
rutting and roughness and the time to initiation of cracking. Separate sets of calibration coefficients were 
supplied by ARRB for seven zones with differing road designs, land types and climates. For each of the seven 
zones, there were also specified values for the Thornthwaite moisture index, the HDM-4 environmental 
coefficient ‘m’, and mean monthly precipitation.26 

5.4 Optimisation without budget constraints 

5.4.1 Representation of treatment ‘options’ 

In the model’s computer program, a treatment ‘option’ was represented as a two-part nested list. The first 
part of the list was a list of treatment times from years one to 40. The second part was a list of corresponding 
treatment types, coded 1 for a resurface, 2 for a resurface with shape correction and 3 for a rehabilitation. To 
illustrate, the option {{5, 18, 35}, {2, 1, 3}} implies a resurface with shape correction (treatment type 2) will be 
undertaken in year five, a resurface (treatment type 1) in year 18, and rehabilitation (treatment type 3) in 
year 35. The list {{3, 11, 20, 30, 39}, {1, 1, 3, 1, 2}} implies five treatments will be undertaken over the analysis 
period with resurfacings in years 3, 11 and 30, a rehabilitation in year 20 and a resurface with shape 
correction in year 39. The list for no treatments whatsoever is {{ }, { }}. Both parts of the list must be of equal 
length. 

5.4.2 Optimisation method 

Without annual budget constraints, each individual segment can be processed in isolation because spending 
on one segment in any year has no impact on funds available for the other segments in that year. But this is 

---------- 
26  The table here shows the magnitudes of the HDM-4 calibration coefficients and climate data items. 

 Kcpa AM Kcpa ST Kgs Kgm Krst m MMP TMI 

Minimum 0.7 0.26 0.3 0.3 1.25 0.03 32.14 –17.18 

Length weighted 
average 

0.7 0.29 0.66 0.65 1.76 0.03 45.91 4.60 

Maximum 0.7 0.35 1.19 1.19 2.2 0.04 71.03 41.45 

AM = asphalt mix pavement; ST = surface treatment pavement; MMP = mean monthly precipitation; TMI = Thornthwaite moisture index 
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not sufficient to address the ‘curse of dimensionality’. For a single segment, with four treatment types, 
including the null treatment, and 40 years, there are 440 ≈ 1024 options.27 

In early attempts to find optimum solutions, it was found that, faced with the huge number of possible 
solutions and with a starting point far away from the optimum, the genetic algorithm software was unable to 
find a solution that could not be significantly improved by making manual changes. 

Ways to reduce the number of solutions to a manageable level were discussed in Section 4.5. One of these is 
to set a minimum time interval between treatments. Specifying a minimum time interval between treatments 
is a reasonable restriction to impose on solutions because the economically optimal solution is unlikely to 
involve one periodic maintenance treatment implemented within a few years or less of another unless the 
treatments have very low implementation costs. 

The first treatment implemented during the analysis period can occur in any year from 1 to 40, or no 
treatment may in implemented in any year. After the first treatment has occurred, a minimum time interval of 
eight years applied. For example, a solution option with treatment times {10, 16, 30} would not be tested, 
while {10, 18, 30} would be. The 8-year minimum time interval is well under the 12-year period before crack 
initiation assumed for surface treatment pavements and the 16-year period for asphalt mix pavements. The 
number of treatments in each option then varies from zero to five. Five treatments, eight years apart, is the 
maximum that can fit within the 40-year analysis period, for example, treatments in years {1, 9, 17, 25, 33} or 
{8, 16, 24, 32, 40}. With a minimum interval of eight years between treatment times, there are 7837 possible 
combinations of treatment times that will fit within a 40-year analysis period.  

For each combination with n treatments over the analysis period from zero to five, there are 3n permutations 
of treatment types giving rise to 581,485 possible options to test for each road segment. With this number of 
options, the full enumeration approach is feasible for optimisation as long as each segment can be considered 
in isolation. Appendix B provides the computer code for obtaining the list of options to test. 

During processing, the model discarded some of the 581,485 solution options for each segment because they 
violated the technical restrictions. These were mostly options with long intervals of time without treatments 
during which pavement condition deteriorated severely. The no-treatment option, {{ }, { }}, was not technically 
feasible for a 40-year analysis period because a pavement neglected for that length time will exceed the 
maximum allowable roughness level during the period. For segments in very poor condition at the start of the 
analysis period, for example, a roughness above 6.3 m/km IRI, the technical restrictions made it mandatory to 
implement a treatment in year one. In such cases, all options for which the first treatment occurred after year 
one did not need to be tested, saving on model run time. Under the full enumeration approach, having 
estimated the costs for the full list of options that comply with the technical restrictions, the model simply 
selected the one with the lowest PVTTC or PVAC value as required. 

Figure 5.1 shows plots of PVTTC against PVAC values for all options that did not violate the technical 
constraints in the model for four segments out the 2034 processed — actual examples of the conceptual 
illustration in Figure 3.9. Numbers of points shown range from 300,000 to 570,000. The points with the lowest 
PVTTC for each PVAC value trace out a U-shaped curve similar to the curve in Figure 3.3, but show that, in 
practice, there can be irregularities in the U-shape and more than one local minimum. The parallel lines traced 
out by the points arise where a group of similar options is shifted in time in one-year increments. The 
segment in the lower-right plot is unusual. It had a low initial roughness level and only required resurfacing 
treatments during the analysis period. In the lower-right plot, the U-shape is still present in the lower left 
corner of the mass of points but the left side of the U-shape is limited to a single point north-west of the 
minimum. 

---------- 

27  Calculated from 𝑥𝑎 = 10𝑎 𝐿𝑜𝑔10(𝑥) 
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Figure 5.1 Plots of PVTTC against PVAC for all options assessed for four segments 

 

5.5 Case study results 

5.5.1 Unconstrained total cost minimisation 

Only the first 20 years of results are presented here (the ‘focus period’) because the results for years 20 to 40 
are of less interest and were only included in the model to minimise possible distortions of the early-year 
results from having a finite analysis period.  

Table 5.4 summarises the results in percentages of the network treated and spending, in total and for the 
three main treatment types. Figures 5.2 and 5.3 respectively show the forecast spending and kilometres 
treated including a breakdown by treatment type, comparing results from the BITRE and ARRB models. 

Table 5.4 Summary of BITRE modelling results: unconstrained optimisation minimising PVTTC 

Years Percent of network kilometres treated Spending ($ millions) 

 Resurf. RSC Rehab. Total Resurf. RSC Rehab. Total 

Totals 

1 48 4 2 54 103 35 48 186 

1 to 10 62 8 26 97 132 70 701 903 

11 to 20 59 17 11 87 85 133 384 602 

1 to 20 122 26 37 184 217 203 1,085 1,505 

Annual averages 

1 to 10 6 1 3 10 13 7 70 90 

11 to 20 6 2 1 9 9 13 38 60 

1 to 20 6 1 2 9 11 10 54 75 

Notes: Percentages of network kilometres treated in excess of 100% occur where the same road segments are treated more than 
once over the time period. 

 Resurf. = resurface, RSC = resurface with shape correction, Rehab. = rehabilitation 
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The economically optimal solution required the road agency to spend $1505 million over the 20 years, an 
annual average of $75 million. On average, 9% of the network by length would be treated each year. Spending 
was higher over years 1–10 than over years 11–20, with average annual spending of $90 million and 
$60 million respectively. The split of costs between treatment types for the 20 years was 14% for resurfacing, 
14% resurfacing with shape correction and 72% rehabilitation. The model rehabilitated just over a quarter of 
the network during the first 10 years, another tenth during the second 10 years, and very little after year 20 
(not shown in Table 5.4), because the network’s condition had been brought up to a high standard. 

Figure 5.2 Forecast optimal expenditure without budget constraints 

 

Figure 5.3 Forecast optimal road lengths treated without budget constraints 

 

The $186 million amount in the first year to treat 54% of the network suggests there was a substantial 
‘backlog’ of maintenance work that would ideally be undertaken as soon as possible. Of the kilometres 
treated in year one, 90% were resurfaced (55% by spending) reflecting the fact that, as shown in Table 5.1, 
50% of the network by length had cracking of 3% and above. However, it is demonstrated in Chapter 6 that 
nearly half of the year-one optimal spending could be deferred for a short period at little cost to society. 
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Figure 5.4 plots roughness just prior to treatment against AADTs as forecast by the BITRE model for all 
resurface with shape correction and rehabilitation treatments recommended from years 2 to 20.28 
Resurfacing treatments are not shown because they have little impact on roughness. Treatments carried out 
at the end of year one were excluded because many of them were carried out above roughness levels that 
would be economically optimal. The expected inverse relationship between AADT and maximum roughness 
before intervention is evident. The chart shows that for AADTs up to 5000 vehicles per day, the model rarely 
allowed roughness to rise above 4.5 m/km IRI. For AADTs between 5000 and 9,000 vehicles per day, the 
maximum was, for the most part, in the range of 3.5 to 4.0 m/km IRI. Above 11,000 vehicles per day, the 
maximum was 3.5 m/km IRI. Rehabilitation treatments, being more expensive and more effective, tend to be 
carried out at higher roughness levels, which is to be expected. 

Figure 5.4 shows some treatments occurring at very low roughness levels, the lowest being at 1.8 m/km IRI, 
on low-trafficked roads, which seems difficult to justify on an economic basis. In all such cases, a rehabilitation 
was triggered by the technical restriction that the pavement strength not be allowed to fall below an adjusted 
structural number (SNP) of 3.0. Other reasons for treatments at relatively low roughness levels were that 
rehabilitation costs rise as road condition worsens and resurfacing with shape correction treatments cease to 
be feasible above specified cracking levels. 

Figure 5.4 Roughness levels at which treatments undertaken plotted against AADT 

 
Note: AADTs and roughness levels were recorded at the end of the year just before a resurface with shape correction or 

rehabilitation treatment was undertaken. 

---------- 
28 The road condition measures in the model could be considered to apply on the 30 December of each year and treatments occur on 

the 31 December. 
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5.5.2 Initial road condition 

As a way of exploring the determinants of maintenance spending needs further, Table 5.4 shows correlation 
coefficients between fields in the data base at year zero and forecast spending for the first 10 years and 20 
years. For each of the 2034 segments, annual spending amounts over the first 10 and first 20 years of the 
analysis period were summed and divided by segment length in kilometres to remove the effect of segment 
length on spending. 

Correlations were stronger with spending over the first 10 years than over the first 20 years because 
treatments from years 10 to 20 are further removed in time from the initial pavement condition data. AADT is 
an exception with a higher correlation coefficient for 20 years, which is understandable as AADT is a 
persistent property of a road segment not an initial condition that changes with a treatment. Roughness in 
year zero had the highest correlation coefficients indicating it was the most important influence on spending 
needs, followed by cracking. The negative correlation with pavement strength is expected because weaker 
pavements deteriorate faster and are more likely to require treatment. The percentage of heavy vehicles and 
rut depth have little relationship with spending needs. 

Table 5.5 Correlation coefficients between initial pavement condition variables and forecast spending per 
kilometre for all 2034 segments 

 First 10 years First 20 years 

AADT 0.11 0.21 

% Heavy vehicles –0.06 –0.01 

Cracking 0.47 0.30 

Pavement strength –0.30 –0.27 

Rut depth 0.04 –0.03 

Roughness 0.56 0.43 

5.5.3 Time intervals between treatments 

The time intervals between treatments are of interest because a minimum time interval was set to keep the 
number of treatment options to a manageable level. Setting aside the time interval between year zero and 
the first treatment, for each segment, there can be up to four time intervals between subsequent treatments. 
For example, a segment with five treatments in its optimal solution occurring in the years {2, 10, 20, 29, 38} 
would have time intervals between treatments of {8, 10, 9, 9} years. A segment with two treatments occurring 
in the years {15, 35} would have just one time interval between treatments of 20 years. Table 5.6 presents an 
analysis of time intervals between treatments in the optimal solution based on pavement type and the 
treatment types at the start and the end of each time interval. 

The average time intervals were 11.2 years for surface treatment pavements and 16.1 years for asphalt mix 
pavements. These are close to the assumed times to crack initiation of 12 years and 16 years respectively. 
Time intervals leading up to a rehabilitation, the most costly and most effective treatment, which effectively 
creates a new pavement, were generally longer and could be up to 25 years as deterioration was allowed to 
progress to a high level just before the rehabilitation. Time intervals following the less effective and less costly 
resurface with shape correction treatment tended to be shorter. Some treatment sequences occurred rarely 
or not at all for one pavement type or the other, based on counts of 5, 2 or zero occurrences shown in 
Table 5.6. 
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Table 5.6 Time intervals between treatments 

  Surface treatment pavement Asphalt mix pavement 

Start 
treatment 

End 
treatment 

Count 
Time interval 
range (years) 

Time interval 
avg (years) 

Count 
Time interval 
range (years) 

Time interval 
avg (years) 

Resurf. Resurf. 816 8 – 16 11.7 38 16 – 20 17.6 

Resurf. RSC 1150 8 – 17 12.2 110 14 – 21 18.0 

Resurf. Rehab. 138 8 – 21 13.1 34 15 – 23 19.5 

RSC Resurf. 17 9 – 13 11.5 2 19 – 19 19.0 

RSC RSC 1415 8 – 17 9.7 349 8 – 21 12.3 

RSC Rehab. 44 8 – 20 8.4 5 8 – 23 18.6 

Rehab. Resurf. 588 10 – 16 11.9 89 16 – 19 17.2 

Rehab. RSC 0 na na 106 17 – 23 21.3 

Rehab. Rehab. 2 18 – 19 18.5 46 19 – 25 22.4 

All  4170 8 – 21 11.2 779 8 – 25 16.1 

Notes: The table excludes time intervals between year 0 and the first treatment. 
 Resurf. = resurface, RSC = resurface with shape correction, Rehab. = rehabilitation, avg = average 

5.5.4 Minimising agency costs subject to standards constraints 

The cost–effectiveness analysis approach discussed in Chapters 3 and 4 — minimising the present value of 
road agency costs subject to minimum road condition constraints — was implemented on the case study data. 
Maximum roughness constraints were set below the general 6.3 m/km IRI maximum imposed as a technical 
restriction, and the model was changed to select the option for each segment with the lowest PVAC value. 

In order to represent the situation of a severely budget-constrained road agency, the standards were set at 
the lowest acceptable level for roads on the Australian National Network. The Australian Government’s Notes 
on Administration for Land Transport Infrastructure Projects (DITRD 2013, p. 26) provides a method “to 
indicate the adequacy of a road’s riding quality to meet its transport objectives based on the road’s 
roughness”, which calculates boundaries between quality bands expressed in IRI units. The formula to 
calculate a boundary roughness level is 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐼𝑅𝐼 = 𝑘 (
110

𝑆𝐿
)

0.5

[
7.1

(𝐶𝑎𝑟_𝐴𝐴𝐷𝑇 + 4 × 𝐻𝑉_𝐴𝐴𝐷𝑇)0.11
+ 0.05] 

where 

• SL = speed limit in kilometres per hour 

• Car_AADT = AADT for cars 

• HV_AADT = AADT for heavy vehicles 

• k is a constant set at 

o 1.0 for the boundary between ‘good’ and ‘mediocre’ 
o 1.3 for the boundary between ‘mediocre’ and ‘poor’ 
o 1.6 for the boundary between ‘poor’ and ‘very poor’. 

The formula accounts for the fact that higher maintenance standards are economically warranted for roads 
with higher traffic levels, higher proportions of heavy vehicles and higher speed limits. Heavy vehicles are 
weighted by a factor of four to reflect the higher user costs per vehicle compared with cars. For the purposes 
of our case study, the boundary between ‘poor’ and ‘very poor’ (k = 1.6) was chosen as the upper limit on 
roughness. All segments in the database were assumed to have speed limits of 100 km/h. The model was set 
up to reject all treatment options for which roughness in any year after year one exceeds the maximum given 
by the formula. Year one roughness levels were excluded because they existed just before any year-one 
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treatment could be applied. As traffic levels grow over time, the maximum permitted roughness levels reduce. 
The 6.3 m/km IRI technical maximum roughness restriction remained in place, but it was redundant. It would 
apply only for segments with very low AADTs — well below the lowest AADT in the database. 

Figure 5.5 was constructed in the same way as for Figure 5.4 except that it also shows, for each data point, the 
maximum roughness permitted according to the formula given the AADT prevailing at the time of each 
treatment. The maximum roughness levels plotted show points at different heights for the same AADT level 
reflecting differences in heavy vehicle proportions. 

Figure 5.5 Cost effectiveness analysis: Roughness levels at which treatments carried out and maximum 
permitted 

 

Table 5.7 presents the results in same way as for Table 5.4. Compared with PVTTC minimisation, total 
undiscounted spending over the 20 years was reduced by $268 million or 18%. The cost saving occurred in the 
first 10 years, with $283 million saved in the first 10 years followed by a small increase in spending over the 
second 10 years. Average annual spending reduced from $75 million to $62 million. The total percentage of 
the network, by length, treated over the 20 years was almost the same. 

The main change that saved costs was that the percentage of the network rehabilitated in the first 10 years 
was halved from 26% to 13%. The percentage split in undiscounted 20-year spending between rehabilitation, 
shape correction and resurface changed from 72:14:14 to 65:14:21, and kilometres treated changed from 
20:14:66 to 14:12:74. By distance, the percentage of the network rehabilitated over the period was 26% 
compared with 37% for minimising PVTTC. 
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Table 5.7 Summary of modelling results: minimising PVAC subject to maximum roughness constraints 

Years Percent of network kilometres treated Spending ($ millions) 

 Resurf. RSC Rehab. Total Resurf. RSC Rehab. Total 

Totals 

1 52 3 1 56 106 30 25 161 

1 to 10 73 8 13 94 158 69 394 620 

11 to 20 62 15 13 89 109 101 406 617 

1 to 20 135 23 26 183 267 170 800 1237 

Annual averages 

1 7 1 1 9 16 7 39 62 

1 to 10 6 1 1 9 11 10 41 62 

11 to 20 7 1 1 9 13 9 40 62 

Notes: Resurf. = resurface; RSC = resurface with shape correction; Rehab. = rehabilitation 
 Percentages of network kilometres treated in excess of 100% occur where the same road segments are treated more than 

once over the time period. 

Figures 5.6 and 5.7 respectively compare annual spending and kilometres treated by treatment type for 
minimising PVTTC (left side of each bar, identical to Figures 5.1 and 5.2) and minimising PVAC subject to 
minimum standard constraints (right side of each bar). Figure 5.6 shows that changing from PVTTC 
minimisation to standard-constrained PVAC minimisation reduces spending in all of years one to nine, but 
leads to higher spending in some years thereafter. The figures confirm that rehabilitation work is deferred 
under PVAC minimisation. 

Figure 5.8 shows distance-weighted average roughness levels for the network under the two modelling 
approaches. Minimising PVAC subject to a minimum standard constraint gave rise to higher roughness levels, 
which implies higher road user costs. PVUC was $642 million higher than for the economically optimal 
unconstrained PVTTC-minimising solution, well above the saving in PVAC of $279 million, a cost to users of 
$2.30 for each dollar of agency cost saved. The cost to society of the sub-optimal solution was $363 million (= 
$642 million higher PVUC minus $279 million lower PVAC). Had the same cost saving to the road agency been 
achieved by minimising PVTTC subject to a present value budget constraint, the cost to society would have 
been $184 million (= $463 million higher PVUC minus $279 million lower PVAC) because the exogenously-set 
maximum roughness levels under the cost-effectiveness analysis approach were are not optimal from the 
point of the view of society.29 The cost-effectiveness approach is less economically efficient than 
unconstrained PVTTC minimisation both on account of the below-optimal overall level of spending and the 
minimum acceptable road condition constraints. 

---------- 
29  This was estimated by minimising weighted PVTTC, the methodology illustrated in the next section, and interpolating between 

target MBCRs of 3.0 and 3.5. 
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Figure 5.6 Forecast optimal expenditure minimising PVTTC and standard-constrained PVAC 

 
Notes: The left bar for each year is for minimising PVTTC, identical to the data shown in Figure 5.1. The right bar is for minimising 

PVAC subject to the maximum roughness constraint. 
 Rehab. = rehabilitation, RSC = resurface with shape correction, Resurf. = resurface 

Figure 5.7 Forecast optimal kilometres treated minimising PVTTC and standard-constrained PVAC 

 
Notes: The left bar for each year is for minimising PVTTC, identical to the data shown in Figure 5.1. The right bar is for minimising 

PVAC subject to the maximum roughness constraint. 
Rehab. = rehabilitation, RSC = resurface with shape correction, Resurf. = resurface 
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Figure 5.8 Length-weighted average roughness minimising PVTTC and PVAC subject to conditions 
constraints 

 
Note: Starting the vertical axis at 2.0 instead of zero accentuates the difference between the two curves. 

5.5.5 MBCRs above one 

Chapter 3 discussed minimising PVTTC subject to a budget constraint expressed as a present value, that is, a 
maximum allowable value for PVAC. For a network of n segments with index i, the optimisation problem 
becomes 

Minimise ∑ 𝑃𝑉𝑇𝑇𝐶𝑖
𝑛
𝑖=1  subject to ∑ 𝑃𝑉𝐴𝐶𝑖

𝑛
𝑖=1 ≤ 𝐵 where B is the present value budget constraint for 

the network. 

A simple way to implement this is to set up the model to find the option that minimises of PVUC + weight × 
PVAC for each individual segment and adjust the weight, re-running the model as necessary, to produce the 
desired PVAC value. It was shown in Chapter 3 that the value of the weight is the MBCR, that is, the benefit 
from increasing PVAC by one dollar. 

For each segment, the model found all technically feasible solutions from the possible 581 485 treatment 
timing and type combinations. From the list of feasible solutions, the model selected the option with the 
lowest PVTTC, which is the best overall option in the absence of any budget constraints. While the list for the 
segment being processed was held in the computer’s memory, it was a simple matter to also extract from the 
list, the options with the lowest values for PVUC + weight × PVAC for a selection of specified weights. This was 
done for weights or MBCRs ranging from 1.5 to 25. 

Model results were also extracted for minimising PVAC. In theory, minimising PVAC with no constraints should 
lead to zero maintenance activity. However, the technical constraints in the model and the increasing cost of 
treatments and depreciation as road condition falls, gave rise to a basic maintenance scenario. The MBCR is 
infinite due to PVUC having a zero weighting. 

Model outputs are summarised in Table 5.8 with PVUC normalised to zero for the optimum with MBCR equal 
to one. Regardless of the MBCR, first year spending was always well above annual averages. Comparison of 
average spending over the two 10-year periods shows that raising the MBCR delays spending. 
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Figure 5.9 shows annual maintenance expenditures for the first 20 years for MBCRs of 1, 10 and 20. 
Imposition of a present value budget constraint has a limited impact on warranted first-year expenditure but 
does significantly delay spending. Annual spending is higher for MBCR = 1 up to year 15, after which spending 
is higher with MBCR = 10 or 20 for all but year 17. 

Table 5.8 Model results with increasing MBCRs compared 
($ millions) 

MBCR PVTTC PVAC PVUC AC 1 
Average 
AC 1–10 

Average 
AC 10–20 

Average 
AC 1–20 

Correlation 
AC 1–20 

1 1902 1902 0 186 90 60 75 1.00 

1.5 1933 1747 186 181 77 62 69 0.76 

2 1970 1696 274 175 71 63 67 0.69 

2.5 2015 1660 355 169 67 66 66 0.53 

5 2176 1594 582 156 57 52 55 0.59 

7.5 2282 1573 709 161 50 54 52 0.48 

10 2340 1565 775 163 48 56 52 0.43 

12.5 2396 1560 836 167 45 59 52 0.38 

15 2443 1556 887 166 45 59 52 0.36 

17.5 2488 1553 935 166 44 59 51 0.35 

20 2520 1551 968 165 44 59 51 0.35 

25 2562 1549 1013 166 43 59 51 0.35 

Infinite 2718 1546 1171 165 42 55 49 0.38 

Notes: PVUC has been normalised to zero with PVTTC = PVAC + PVUC.  
 AC 1 = road agency cost in year one. 
 AC x – y = annual average of undiscounted road agency costs for the years x to y. 
 AC 1–20 correlation is the correlation coefficient between annual road agency costs over years 1 to 20 for MBCR = 1 

(unconstrained) and the MBCR for the row concerned. It is a measure of the degree to which the spending profile differs 
from the optimal scenario. 

Figures 5.10 and 5.11 plot the values of PVTTC, PVAC and PVUC, with PVUC normalised to zero at the 
unconstrained optimum with an MBCR of one. Figure 5.11 is equivalent to the portion of Figure 3.3 in 
Chapter 3 to the left of the optimum. The results show the cost to society of restricting maintenance spending 
as the additional costs to road users outweighs the saving in agency costs, such that PVTTC is $660 million 
above the unconstrained optimum when the MBCR reaches 25. 

When applied to an individual segment, the discrete nature of the treatment types and implementation years 
means that the same option will have the lowest weighted PVTTC over a range of values for the weights. 
However, for a network of segments taken together, the relationships between the present values of costs 
summed over all segments approximate a smooth curve. 
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Figure 5.9 Annual warranted spending with MBCR values of 1, 10 and 20 

  

Figure 5.10 Present values of costs with different MBCR values plotted against MBCR 
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Figure 5.11 Present values of costs with different MBCR values plotted against PVAC 

 
Note: Figure 5.11 contains an additional data observation not shown in Figures 5.10 and 5.12. The leftmost point, for a PVAC value 

of $1 546 million, is for an infinite MBCR found by minimising PVAC subject only to the technical constraints in the model. 

Figure 5.12 MBCR plotted against PVAC saved 
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Figure 5.12 displays the outputs in a telling way. The horizontal axis is the amount by which PVAC was 
reduced compared with the unconstrained optimal value where the MBCR is one, in other words, the cost 
saving to the road agency. MBCR is plotted on the vertical axis. The first step, raising the MBCR from 1.0 to 1.5 
reduced PVAC by $155 million, an 8% saving. The next step, raising the MBCR from 1.5 to 2.0 saved 
$51 million or 2.7%. Thereafter, the rise in the MBCR for each additional dollar reduction in PVAC became 
extremely steep. The rise was more than exponential. The fitted curve asymptotically approaches a saving of 
$362 million, but the model was unable to go beyond a saving of $356 million, or 19%, without relaxing the 
technical constraints within the model. The finding that MBCRs rise slowly at first as spending is reduced and 
then increase rapidly as spending is further restricted is repeated for annual budget constraints in the next 
chapter.  

The discussion of incremental BCRs in Chapter 3 provided formulas for incremental BCRs between two points 
on the minimum PVTTC curve, one of which is 

𝐼𝐵𝐶𝑅 = −
𝑃𝑉𝑇𝑇𝐶2 − 𝑃𝑉𝑇𝑇𝐶1

𝑃𝑉𝐴𝐶2 − 𝑃𝑉𝐴𝐶1
+ 1 

Table 5.9 shows changes in present values and IBCRs calculated between the points where spending for 
various MBCRs has been estimated. As expected, the IBCRs are always between the MBCRs for the upper and 
lower points. 

Table 5.9 Incremental BCRs in between marginal BCRs 

∆PVTTC 
($ millions) 

∆PVAC 
($ millions) 

∆PVUC 
($ millions) 

Lower MBCR IBCR Upper MBCR 

–617 351 –968 1 2.8 20 

      

–438 337 –775 1 2.3 10 

–180 14 –194 10 13.8 20 

      

–112 243 –355 1 1.5 2.5 

–162 66 –227 2.5 3.5 5 

–106 21 –127 5 5.9 7.5 

–58 7 –65 7.5 8.7 10 

–56 6 –61 10 11.1 12.5 

–48 4 –51 12.5 13.7 15 

–44 3 –47 15 16.2 17.5 

–32 2 –34 17.5 18.6 20 

-43 2 -45 20 21.9 25 

5.6 Sensitivity tests 

Table 5.10 summarises results from a variety of sensitivity tests in which PVTTC was minimised after changes 
to the model or to the data. With the exception of the last column, all results are presented as differences 
from the central scenario result. The columns are 

1. PVTTC over the 40-year analysis period including depreciation and safety costs 

2. PVAC including depreciation 

3. PVUC including safety costs 

4. UC 1–20 — undiscounted sum of annual user costs (including safety) over years 1 to 20 — a measure of 
the impact on users 
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5. AC 1 — road agency cost (spending) in year one 

6. AC 1–10 — undiscounted sum of annual road agency costs (spending) over years 1 to 10 

7. AC 10–20 — undiscounted sum of annual road agency costs (spending) over years 10 to 20. 

o Columns 6 and 7 indicate how spending shifts from the first half to the second half of the 20-year 
focus period. 

8. AC 1–20 — undiscounted sum of annual road agency costs (spending) over years 10 to 20. 

o Columns 6 and 7 sum to column 8 with small differences due to rounding. 

9. AC 1–20 correlation — correlation coefficient between annual road agency costs compared with the 
central scenario over years 1 to 20. It is a measure of the degree to which the sensitivity test altered the 
spending profile compared with the central scenario. 

Discount rate 7%: Raising the discount rate reduced agency spending overall (6% reduction over the 20 years) 
at the expense of users and pushed spending into the future. From the correlation coefficients column, it 
produced the largest rearrangement of the annual spending profile. 

Pavement strength 20%: The design adjusted structural numbers were multiplied by 1.2 and 0.8. As the 
design pavement strength for each segment was assumed to apply when the pavement age was zero, each 
altered design pavement strength was projected forward to the first year of the analysis period using 
equation 2.2. The change in pavement strengths had little effect on user costs, but a significant impact on 
agency costs (–14% for stronger payments and +23% for weaker pavements over the 20 years). The weaker 
pavement sensitivity test caused large increases in agency costs during the early years. Once the pavements 
were rehabilitated to bring them up to design standard, the sensitivity test on initial design strengths had no 
effect, hence the smaller impact during the later years. 

User costs without safety: The effect of omitting safety from user costs was tested because most maintenance 
optimisation studies do not take account of safety costs. Optimal treatments selected were those with 
minimum PVTTC without safety costs, but the present values reported in Table 5.10 include safety costs in 
order to show the cost of the resulting sub-optimal solution. PVTTC was $26 million higher because omitting 
safety leads to a worse outcome from the point of view of society. Over the 20-year focus period, 
undiscounted user costs were $123 million higher compared with a saving to the road agency of $79 million 
due to pushing maintenance spending into the future. 

No depreciation: A few studies in the literature have no residual value or depreciation at the end of the 
analysis period, relying instead on a long analysis period to allow for the far future. The optimal treatments 
selected by the model were those with minimum PVTTC without depreciation, but the present values 
reported in Table 5.10 include depreciation in order to show the cost of the resulting sub-optimal solution. 
The sensitivity test shows that, with a 40-year analysis period and 4% discount rate, the effects of omitting 
depreciation were fairly small, but there was some disadvantage to road users over the 20-year focus period. 
The impact would be much greater with shorter analysis periods, though this would be offset if the discount 
rate was higher. 
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Table 5.10 Results of sensitivity tests 
($ millions deviation from the central scenario except for column 9) 

Sensitivity test PVTTC PVAC PVUC UC 1–20 AC 1 AC 1–10 AC 10–20 AC 1–20 AC 1–20 correlation 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Central scenario 0 0 0 0 0 0 0 0 1.00 

Discount rate 7% –1612 –847 –765 207 –8 –225 140 –85 0.46 

Pavement strength +20% –209 –190 –19 37 –1 –199 11 –188 0.77 

Pavement strength –20% 361 377 –16 37 61 237 209 447 0.74 

User costs without safetya 26 –79 105 123 –12 –75 42 –33 0.81 

No depreciationa 50 –8 58 –8 12 11 –11 0 0.95 

Analysis period 30 yearsb na na na –3 13 28 –144 –116 0.90 

Analysis period 20 yearsb na na na 168 28 –150 –341 –491 0.84 

Only even years > 22 2 4 –3 –2 10 1 4 5 0.98 

Every third year after 22 6 0 6 1 0 –4 22 18 0.94 

Only years divisible by 5 >22 15 –1 16 –1 1 –13 12 –1 0.88 

Minimum interval between 
treatments 11 years 

21 –10 31 0 0 –1 –26 –26 0.79 

Notes: AC 1 = road agency cost in year one. 
 AC x – y = annual average of undiscounted road agency costs for the years x to y. 
 AC 1–20 correlation is the correlation coefficient between annual road agency costs over years 1 to 20 for MBCR = 1 (unconstrained) and the MBCR for the row concerned. It is a 

measure of the degree to which the spending profile differs from the optimal scenario. 
a. For the sensitivity tests excluding safety and depreciation, the optimal selection of treatment options changed, but the present values reported in the table include safety and 

depreciation in order to show the cost to society of the resulting sub-optimal solution.  
b. Changes in present values for shortening the analysis period are not reported because present values over different analysis periods are not comparable. 
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The last six sensitivity tests explored the effects of ways to reduce the number of options and hence model 
run times. Table 5.11 details these sensitivity tests including the impact on the number of options to be 
tested. 

Shorter analysis period: As evident in Table 5.11, shortening the analysis period is highly effective in reducing 
the number of treatment options. With a 30-year analysis period and an eight-year minimum interval 
between treatments, a maximum of four treatments (for example treatments in years 1, 9, 17 and 25) can be 
undertaken within the analysis period. Further reducing the analysis period to 20 years, a maximum of three 
treatments (for example treatments in years 1, 9 and 17) can be undertaken. Table 5.10 shows that the 
impact on results was significant, particularly for the 20-year analysis period. For the 30-year analysis period, 
there was little effect on undiscounted user costs, while undiscounted agency costs for the first 20 years were 
8% lower. For the 20-year analysis period, undiscounted user costs were significantly higher and undiscounted 
agency costs down by 48%. The reduction in agency costs means the network was in poorer condition at the 
end of year 20 compared with the 40-year analysis period. Shortening the analysis period places greater 
reliance on the depreciation formula to approximate the PVTTC for years after the end of the analysis period. 
Improving residual value or depreciation formulas might be a topic for future research but the degree of 
improvement possible may be limited. A higher discount rate would also make shorter analysis periods less 
distorting. 

Skipping analysis years: For the three sensitivity tests in which some of the later years of the analysis period 
were skipped, years 1 to 22 were retained. Skipping year 21 would push some year 21 maintenance spending 
into year 20, which is within the focus period for the study. For the ‘only even years >22’ sensitivity test, 
treatment timing combinations such as {5, 19, 30} would be assessed but not {5, 19, 31}. For the ‘only years 
divisible by 5 >22’ test, treatment timing combinations such as {2, 14, 25, 40} would be assessed but not {2, 
14, 26, 40}. The results in Table 5.11 indicate that omitting some years in the latter part of the analysis period 
has only a limited effect on the model’s results, though the declining correlation coefficients as more years 
are skipped suggests that dropping a larger number of years caused some changes to the spending profile 
during the first 20 years. 

Table 5.11 Details of sensitivity tests of ways to reduce model run times 

Sensitivity test 
Possible treatment 

years 

Minimum years 
between 

treatments 

Number 
of options 

Number of options 
/ 581 485 % 

Case study model 1–40 8 581 485 100.0% 

Analysis period 30 years 1–30 8 27 694 4.8% 

Analysis period 20 years 1–20 8 1 303 0.2% 

Only even years > 22 
1–22, 24, 26, 28, 30, 

32, 34, 36, 38, 40 
8 208 831 35.9% 

Every third year after 22 
1–22, 25, 28, 31, 34, 

37 ,40 
8 97 411 16.8% 

Only years divisible by 5, 
>22 

1–22, 25, 30, 35, 40 8 58 120 10.0% 

Minimum interval 
between treatments 
11 years 

1–40 11 51 826 8.9% 

Minimum interval between treatments 11 years: In this sensitivity test, the minimum time interval permitted 
between treatments was increased from eight to 11 years, just below the 12-year crack initiation period (the 
period of time before cracking starts rise) for surface treatment pavements. An example of a treatment timing 
combination with 11-year intervals is {1, 12, 23, 34}. The maximum number of treatments that could be fitted 
within the analysis period reduces from 5 to 4. The results in Table 5.11 show that the impact on user costs 
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and spending was relatively small, but the correlation coefficient indicates there was some significant 
rearrangement of the timings of spending in the first 20 years. 

Conclusions from the sensitivity tests are 

• Higher discount rates reduce and delay maintenance spending but at a higher cost to road users. 

• Pavement strengths at the start of the analysis period can have a large impact on road agency costs in 
total and in timing. 

• Excluding safety costs from the analysis disadvantages road users with a small reduction in road agency 
costs. 

• Shorter analysis periods relative to the focus period can distort results because depreciation estimates are 
highly approximate predictors of PVTTC beyond the end of the analysis period. It is better to reduce 
reliance on depreciation estimates by having a longer analysis period. 

• If the time to run the model needs to be reduced, it is better to skip some years in the latter part of the 
analysis period and to increase the minimum time interval between treatments (but not more than the 
number of years before crack initiation) than to shorten the analysis period. 

5.7 Conclusion 

For the report’s case study without annual budget constraints, full enumeration of all possible solutions was 
chosen as the optimisation method to guarantee finding the optimal solution. The absence of annual budget 
constraints meant that each segment could be optimised in isolation from the other segments. But even then, 
with a 40-year analysis period and three treatment types, the number of possible solutions was 
unmanageable. As cracking does not start to occur until the pavement’s surface age reaches 12 years or more, 
it was considered unlikely that the economically optimal solution would involve any periodic maintenance 
treatments with a time interval between them of much below 12 years. Eight years was chosen as the 
minimum time gap between treatments reducing the number of possible solutions for each segment below 
600,000. 

In the absence of annual budget constraints, minimising PVTTC or PVAC subject to maximum roughness 
constraints usually leads to a large spike in spending in the first year and spending in subsequent years can be 
highly uneven. Hence, there is therefore a need to optimise subject to annual budget constraints, which is 
addressed in the next chapter. 

As discussed in Chapter 3, imposing budget constraints in the form of present values of road agency costs, 
while unrealistic, is straightforward to implement provided one starts by setting an MBCR. Setting MBCRs in 
small steps from 1.5 to 25 showed that a road agency can reduce spending at relatively little cost to users up 
to a point. The MBCR rises gently at first as spending is reduced. However, as the budget is further reduced, 
the rise in MBCR, and hence the cost of society of each dollar of PVAC saved, rapidly accelerates until reaching 
the minimum possible PVAC value within the technical constraints of the model. This finding is repeated in the 
next chapter for annual budget constraints. Constraints imposing small-to-moderate spending cuts can be 
imposed at little cost to society, but the cost rapidly rises for tighter constraints. 

If computer run times for the model need to be reduced, the sensitivity tests showed that it is better to retain 
the longer 40-year analysis period and skip some years in the later part of the period (that is, not to test 
options with treatments in the skipped years) than to shorten the analysis period to 30 or 20 years. 
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6. Case study with annual budget constraints 

Summary 

Optimising subject to annual budget constraints requires all segments to be considered together. A four-stage 
optimisation approach was developed for the case study. The stages were 

1. Full enumeration of options for all segments, already discussed in Chapter 5 

2. Elimination of ‘dominated’ options that could not possibly appear in an optimal solution subject to annual 
budget constraints because there is a better option 

3. Selection of the option for each segment that minimises the objective function (PVTTC or PVAC) plus the 
road agency spending in each budget-constrained year times a ‘penalty factor’. A higher penalty factor for 
a given year discourages selection of options with treatments in that year. The penalty factors are 
adjusted so that the annual budget constraints are met 

4. Fine adjustment of the solution by allowing a genetic algorithm to select from the available options to 
minimise the objective function subject to the budget constraints. This mitigates the limitation of the 
penalty method that it treats a discrete problem as if it were continuous. Treatments are shifted between 
years to take advantage of any gaps between forecast spending and annual budget constraints. 

Provided the penalty factors are at the lowest possible values to achieve the solution, MBCRs can be obtained 
for each year using the formula from Chapter 3, 𝑀𝐵𝐶𝑅𝑡 = (1 + 𝑟)𝑡𝑡 + 1, where λt is the penalty factor for 
year t. 

Case study results with annual budget constraints for the first 10 years and the first 20 years showed that 

• The required penalty factors and hence MBCRs were highest for the first year when the demand for funds 
is greatest and declined thereafter. 

• A substantial proportion of the year-one maintenance backlog could be deferred at little cost. 

• Penalty factors increased at an increasing rate as annual budget constraints were tightened. 

• As constraints were tightened, PVAC fell initially, and then rose as the additional costs in later years to 
recover from the underspending in early years predominated. 

• There were limits on how much spending could be constrained due to the technical constraints imposed 
in the model. 

A simple triaging method for maintenance treatments using only a penalty factor for year one, was 
demonstrated to work satisfactorily for modest budget constraints, but not for tight constraints. 

The first-year spending backlog is not a good measure of the maintenance deficit because a large part of it is 
not urgent. Maintenance deficits are better measured by comparing either the ‘sustainable’ level of annual 
spending or average annual forecast spending with current or forecast spending. A ’sustainable’ level of 
spending could be defined as one where there is no jump in optimal spending just following the constrained 
period, or the jump is not so large that it cannot be caught up by continued spending at the sustainable level 
in subsequent years. Annual MBCRs can also serve as measure the maintenance deficit and are directly 
comparable with the BCRs for capital spending. 

The ‘equivalent interest rate for deferred maintenance’ is proposed as a way to convey to decision makers the 
costs of deferring maintenance spending. Saving funds in the short term in exchange for spending more in 
later years to repair the damage done is like borrowing money that has to be repaid later. However, it can be 
a very expensive way to borrow. 

6.1 Introduction 

The case study in Chapter 5 showed that economically optimal maintenance needs forecast by a model in the 
absence of budget constraints can be very uneven from year to year, especially in the first year of the analysis 
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period, when there is usually a large spike or backlog in spending needs. Present value budget constraints do 
not rectify the problem. Imposition of annual budget constraints is therefore needed to keep treatment 
recommendations from an optimisation model within financial and physical resource constraints. 

Annual budget constraints give rise to a new set of analytical difficulties because maintenance needs for each 
segment can no longer be optimised in isolation from the other segments. With a binding annual budget 
constraint, spending on one segment in any year comes at the expense of spending on other segments in that 
year. It is therefore necessary to model all segments together. But this greatly magnifies the curse of 
dimensionality. As discussed in Chapter 5, with a 40-year analysis period, four treatment types including the 
null treatment, and a minimum of an eight-year time interval permitted between treatments, there are up to 
581,485 options for each segment. The total number of possible solutions for the 2034 segments in our case 
study database is therefore up to 581,4852034 ≈ 1011,725. This is less than the 440×2023 ≈ 1048,984 solutions (from 
the formula in Section 4.5) where there is no minimum time interval between treatments. 

This chapter continues the case study of Chapter 5 by finding optional solutions with annual budget 
constraints lasting for the first 10 and 20 years of the analysis period. Results are presented both for PVTTC 
minimisation and PVAC minimisation subject to road condition constraints. The dimensionality problem is 
addressed though a four-stage optimisation approach. MBCR values are derived for individual years showing 
the benefit to society from a small increase in the budget for a given year, holding budgets in other years 
constant. 

A simple method for triaging year-one treatments, that is, identifying year-one treatments in the 
unconstrained optimal solution that can be deferred at low cost is presented, but it works only for moderate 
reductions in year-one spending. 

The chapter ends with a discussion of ways to measure the size of ‘maintenance deficits’. 

6.2 Optimisation method for annual budget constraints 

6.2.1 Overview 

Typically, in the maintenance optimisation literature, a uniform annual budget constraint is set for a network 
of segments for the first several years, then no constraints thereafter. Periods of 10 and 20 years were chosen 
for annual budget constraints rather than shorter periods such as the five years in Archondo-Callao (2008) 
because of the large bulge in delayed spending in the years immediately following the constrained years. With 
10-year constraints, there can be a bulge in year 11, but it is further into the future compared with year six in 
the case of five years of constraints. 

For annual budget constraints, the network optimisation problem is to find the maintenance spending in each 
year t on each segment, cit, to minimise network PVTTC 

∑ 𝑃𝑉𝑇𝑇𝐶𝑖(𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖𝑚, 𝑐𝑖𝑚+1, … )

𝑛

𝑖=1

 

subject to annual budget constraints for the first m years, ∑ 𝑐𝑖𝑡
𝑛
𝑖=1 ≤ 𝐵𝑡  for all t from 1 to m. 

Initial attempts to minimise PVTTC subject to annual budget constraints for 10 years using a genetic algorithm 
were unsuccessful, despite using a smaller database for the case study network of 573 ‘strategic segments’ 
developed by ARRB. Faced with an astronomically large number of choices and a starting point well away 
from the optimum, the genetic algorithm experienced diminishing returns in terms of reductions in PVTTC for 
each step without having made much progress towards meeting the constraints. 

The optimisation method employed for annual budget constraints drew on two techniques discussed in the 
literature review in Chapter 4. 

• Torres-Machí et al. (2014) and Medury and Madanat (2014) discussed two-stage approaches. Two-stage 
approaches deal with individual segments in isolation in the first stage, developing a list of solutions for 
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each segment in order of priority. In the second stage, they move down the priority list for each segment 
as required to meet the budget constraints. 

• For imposing budget constraints on a list of options, the Lagrange multiplier approach in Sathaye and 
Madanat (2011) was employed. It is equivalent to the ‘penalty method’ used with genetic algorithms. 

The optimisation approach in this chapter consists of four stages. 

1. Full enumeration of all treatment options for all segments subject to a minimum time interval between 
periodic maintenance treatments (covered in Chapter 5) 

2. For each segment, eliminate all ‘dominated’ options to reduce the numbers of options to manageable 
levels 

3. Find the best possible solution using the penalty method 

4. Allow a genetic algorithm to improve on the solution by giving it complete freedom to change options. 

6.2.2 Stage 2: Eliminating dominated options 

In the first stage of the optimisation process using full enumeration, covered in Chapter 5, road condition, 
maintenance expenditures and user costs were projected forward for 40 years for up to 581,485 treatment 
options for all 2024 segments. Exclusion of options that violate the technical constraints in the model (for 
example, maximum permitted roughness and minimum permitted pavement strength) reduced the total 
number of options for each segment by varying amounts. The largest reductions were for segments that had 
to be treated in year one because of technical constraints in the model. In such cases, options where the first 
treatment occurred in year two and onwards did not need to be considered, leaving 154,677 options to be 
assessed. But only 11 segments out of the 2034 fell into this category. 

Stage 2 dramatically reduced the size of the list of options by eliminating all options that were ‘dominated’ in 
the sense that they could not possibly appear in the optimal solution subject to budget constraints because a 
better option exists. This was be done for each segment in isolation immediately after selecting the 
unconstrained optimum (and weighted optimums for present value budget constraints if required) while the 
full list of options for the segment was held in the computer’s memory. 

One option ‘dominates’ another for the same segment where the dominant option has a lower PVTTC and the 
same annual road agency costs in all budget-constrained years. It may have higher annual road agency costs 
in unconstrained years, but that is irrelevant. Choosing the dominant option over the alternative saves on 
PVTTC without consuming any more of the budgets in constrained years. 

Another way in which one option dominates another occurs where the dominant option has the same PVTTC 
and a lower cost in at least one budget-constrained year without higher road agency costs in any other 
budget-constrained year. Choosing the dominant option saves costs in a budget-constrained year with no 
sacrifice of PVTTC. However, instances of this second from of dominance are unlikely to occur because, with 
PVTTC being a continuous variable, it would be an unlikely coincidence for two different treatment options to 
produce precisely the same PVTTC value. Nevertheless, the dominance test in the model, detailed in 
Appendix B, would find any such cases. 

Formally, letting ct represent agency cost in year t for a given segment, option A dominates option B if either 

• 𝑃𝑉𝑇𝑇𝐶𝐴 < 𝑃𝑉𝑇𝑇𝐶𝐵 and 𝑐𝑡
𝐴 ≤ 𝑐𝑡

𝐵 for all years t that are budget-constrained, or 

• 𝑃𝑉𝑇𝑇𝐶𝐴 = 𝑃𝑉𝑇𝑇𝐶𝐵 and 𝑐𝑡
𝐴 < 𝑐𝑡

𝐵 for at least one year t that is budget-constrained. 

The numerical example in Table 6.1 uses hypothetical numbers to illustrate the dominance relationships. Four 
segments are shown, each with two options labelled A and B. Only the first 10 years of the analysis period are 
shown and budget constraints are imposed for the first five years. 

• Segment 1: Option A dominates option B because they both consume $100,000 of constrained year-one 
funds but option A has a lower PVTTC. 

• Segment 2: Option A dominates option B because they both make no demands on constrained funds in 
years one to five, but option A has a lower PVTTC. 
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• Segment 3: Option A dominates option B because, while both have the same PVTTC value, option A 
requires less funds in constrained year two. 

• Segment 4: Neither option dominates the other because they require funds in different budget-
constrained years. Both options need to be retained in the list of options to take forward to the next stage 
of the optimisation process. 

Note that the length of the period with annual budget constraints affects the number of opportunities to 
eliminate dominated options. In Table 6.1, had there been 10 budget-constrained years instead of five, 
neither of the two options for segments one and two would be dominant because they have treatment costs 
in different budget-constrained years. The longer the constrained period, the smaller the number of 
dominated options that can be eliminated. 

Table 6.1 Numerical example illustrating the dominance concept 
($’000) 

Segment 1 2 3 4 

Option  A B A B A B A B 

PVTTC ($) 1000 1200 500 600 900 900 1000 1100 

Treatment costs by year ($) 

Year         

1 100 100       

2     60 70   

3       140  

4        150 

5         

End of budget-constrained years 

6 120        

7   50  100 80   

8    50     

9         

10  150     100 100 

Note: Columns for dominant options greyed. 

The model was programmed, not only to identify the option with the lowest PVTTC for each segment in the 
database, but also to generate the list of non-dominated options for each segment.  

• For budget constraints over the first 10 years, there were 21 059 non-dominated options, an average of 
10.4 options per segment, with numbers of non-dominated options for individual segments ranging from 
1 to 32.  

• For budget constraints over the first 20 years, there were 272 886 non-dominated options for the entire 
database, an average of 134.2 options per segment, with numbers of non-dominated options for 
individual segments ranging from 1 to 505. 

In a small number of cases, a single option dominated all others, in other words, there was just one non-
dominated option. This occurred for 145 segments for the 10-year optimisation and 8 segments for the 20-
year optimisation. For these segments, the solution with the lowest PVTTC had either no treatments in any of 
the constrained years and hence made no call on funds in the constrained years (as for segment 2 in 
Table 6.1), or a mandatory treatment in the first year required to meet the technical restrictions in the model 
and treatments in no other budget-constrained years that might be shifted to other years. 
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6.2.3 Stage 3: Penalty method 

Even after the dramatic reduction in the number of options following removal of dominated options, there 
remained a huge number of possible combinations of options across all the segments. Stage 3 of the 
optimisation process applied the ‘penalty method’ to obtain a solution very close to the optimum. 

Shifting a treatment from its optimal time in the unconstrained solution to another year in order to reduce 
the demand for funds in the optimal year, imposes a cost in the form of a higher PVTTC for the segment. The 
penalty method minimises the total of the cost increases for all segments by making the least costly shifts. 
Under the penalty method, instead of minimising PVTTC, the value minimised is PVTTC plus the sum of costs 
in constrained years multiplied by penalty factors. 

Say funds were scarce in year one but not in year two. For segments with treatments in year one in the 
unconstrained optimal solution, some year-one treatments need to shift to year two in order to meet the 
year-one budget constraint. Under the penalty method, the decision about whether to treat a particular 
segment in year one or year two would be made by choosing the alternative with the lower value of 

𝑃𝑉𝑇𝑇𝐶 + 𝜆𝑐1, where c1 is the costs of the treatment in year one and  is the penalty factor for year one. As 
year-two funds are unconstrained, there is no penalty factor for year two. 

The decision rule is  

• leave the treatment in year one if 𝑃𝑉𝑇𝑇𝐶𝑦1 + 𝜆𝑐1 < 𝑃𝑉𝑇𝑇𝐶𝑦2 

• shift the treatment to year two if 𝑃𝑉𝑇𝑇𝐶𝑦1 + 𝜆𝑐1 > 𝑃𝑉𝑇𝑇𝐶𝑦2. 

where PVTTCy1 and PVTTCy2 are the respective PVTTCs with the treatment carried out in years one and 
two. 

The decision rule can be rewritten as 

• leave the treatment in year one if (𝑃𝑉𝑇𝑇𝐶𝑦2 − 𝑃𝑉𝑇𝑇𝐶𝑦1) 𝑐1⁄ > 𝜆, that is, if the cost per dollar of year-

one budget saved is above a cut-off value  

• shift the treatment it to year two if (𝑃𝑉𝑇𝑇𝐶𝑦2 − 𝑃𝑉𝑇𝑇𝐶𝑦1) 𝑐1⁄ < 𝜆, that is, if the cost per dollar of year-

one budget saved is below the cut-off value . 

As the treatment is carried out in year one in the unconstrained optimum, we know that 𝑃𝑉𝑇𝑇𝐶𝑦1 <

𝑃𝑉𝑇𝑇𝐶𝑦2 , so the ratio (𝑃𝑉𝑇𝑇𝐶𝑦2 − 𝑃𝑉𝑇𝑇𝐶𝑦1) 𝑐1⁄  is positive. To induce the treatment to shift to year two,  

has be raised to at least the value of the ratio. With the decision rule being applied to a number of segments 

together, as  is progressively raised, more year-one treatments shift to year two. The penalty factor, , 

would be increased to the point where the year-one budget constraint was just met. The  value at this point 
is the maximum acceptable increase in PVTTC to save a dollar of scarce year-one funds. 

Table 6.2 presents a simple numerical example to illustrate application of the rule. Two options are shown for 
two segments. In each case, option A has a treatment in year one and option B, does not. Treatments occur in 
other years not shown in the table. For both segments, option A is preferred in the absence of budget 
constraints because it has the lower PVTTC. In the presence of a year-one funding constraint, switching from 
option A to option B, in both cases, increases PVTTC but saves on scarce year-one funds. In the case of 
segment 1, $100,000 of funds is saved at a cost of a $300,000 increase in PVTTC, a cost to benefit 

ratio, (𝑃𝑉𝑇𝑇𝐶𝑦2 − 𝑃𝑉𝑇𝑇𝐶𝑦1) 𝑐1⁄ , of 3.0. For segment 2, $250,000 of year-one funds is saved at a cost of 

$50,000 in PVTTC, a cost to benefit ratio of 2.0. To reduce spending in year one, the segment 2 treatment 
would be delayed first because it has the lower cost to benefit ratio. Only if further savings were required, 
would the treatment for segment 1 be delayed. So treatments would be shifted out of year one in ascending 
order of cost to benefit ratio. 

The last three rows of Table 6.2 show the effect of applying penalty factors of 1.5, 2.5 and 3.5. The 1.5 penalty 
factor still leads to option A being chosen for both segments. Increasing the penalty factor to 2.5 causes a 
switch to option B for segment 2 only. A further increase in the penalty factor to 3.5 causes segment 1 to 
switch to option B as well.  
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Table 6.2 Numerical example illustrating decision rule with penalty factor 
($’000) 

Segment 1 2 

Option A B A B 

PVTTC 1000 1300 2000 2500 

PVTTCy2 – PVTTCy1 300 500 

Treatment cost in year 1 100 0 250 0 

     

(PVTTCy2 – PVTTCy1) / c1 3  2  

  

PVTTC + λ c1 for λ = 1.5 1150 1300 2375 2500 

PVTTC + λ c1 for λ = 2.5 1250 1300 2625 2500 

PVTTC + λ c1 for λ = 3.5 1350 1300 2825 2500 

Note:  Greyed cells show the minimum PVTTC + λ c1 values. 

Faced with a choice between many segments with treatments in year one in the unconstrained optimal 
solution that can be shifted to year two, the penalty method prioritises shifts in ascending order of their cost 
(increase in PVTTC) to benefit (saving in scarce funds) ratios, minimising the overall cost of achieving the 
budget constraint. A λ value of zero will shift no treatments. Setting a small λ value identifies segments for 
which shifts to year two can be made for little cost in terms of a higher PVTTC. The λ value can be 
progressively raised, shifting treatments out of year one until the year-one budget constraint is met. 

The general form of the decision rule for multiple budget-constrained years is: where budget constraints exist 
for years 1 to m, for each individual road segment i, select from the list of non-dominated options, the 
treatment option (set of times and types) with the lowest value of  

𝑃𝑉𝑇𝑇𝐶𝑖 + ∑𝑡𝑐𝑖𝑡

𝑚

𝑡=1

 

where 

• for each year t from 1 to m, a single penalty factor, t, is applied to all segments in the network 

• the t values are set at zero for years in which the budget constraint is non-binding, and 

• for years where the constraint is binding, the penalty factor is set at a level just high enough to ensure the 
budget constraint for the particular year is met. 

Summing the spending needs for all n segments in each year, the years with spending above the budget 
constraints (Bt) can be identified and their penalty factors increased to the levels at which the budget 
constraints are met, that is, 

∑ 𝑐𝑖𝑡

𝑛

𝑖=1

≤ 𝐵𝑡 

for all constrained years t. 

6.2.3.1 Interpretation of penalty factors 

The penalty factors can be interpreted as Lagrange multipliers from which estimates of MBCRs for individual 
years can be obtained. In Chapter 3, optimisation of PVTTC subject to annual budget constraints was 
discussed in terms of minimising the Lagrangian 

𝐿 = 𝑃𝑉𝑇𝑇𝐶(𝑐1, 𝑐2, … , 𝑐𝑚, 𝑐𝑚+1, … ) − ∑𝑡(𝐵𝑡 − 𝑐𝑡)

𝑚

𝑡=1
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where PVTTC is assumed to be a continuous function of spending each year. 

The penalty method applied to n segments minimises  

∑ [𝑃𝑉𝑇𝑇𝐶𝑖(𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖𝑚, 𝑐𝑖𝑚+1, … ) + ∑𝑡𝑐𝑖𝑡

𝑚

𝑡=1

]

𝑛

𝑖=1

 

Since the annual budget constraints, Bt, are constants, they are not required in the expression to be 
minimised under the penalty method. 

For a single segment, 𝑚𝑖𝑛 (𝑃𝑉𝑇𝑇𝐶𝑖 + ∑ 𝑡𝑐𝑖𝑡
𝑚
𝑡=1 ) is discontinuous as the penalty factor for a single year is 

changed because the model has only a limited number of options to choose from and each option will only 
have treatments in, at most, a few years with budget constraints. However, for a large number of segments 
taken together, the discontinuities in the sum of PVTTCs for all the segments, when λ values are changed, are 
very small. 

Provided network PVTTC as a function the penalty factors, ∑ 𝑃𝑉𝑇𝑇𝐶𝑖
𝑛
𝑖=1 , is not too discontinuous, the set of 

penalty factors that meets the given set of annual budget constraints can be converted to MBCRs using the 
formula from Chapter 3, 𝑀𝐵𝐶𝑅𝑡 = (1 + 𝑟)𝑡𝑡 + 1. 

6.2.4 Stage 4: Refining the solution with genetic algorithm 

The solution from the stage 3 optimisation is the starting point for the stage 4 optimisation. In stage 4, the 
genetic algorithm was allowed to choose between all options for all segments for which two or more 
treatment options were available. Since the genetic algorithm starts with a solution already quite close to the 
optimum, the number of potential solutions to explore — that is, solutions that improve on the starting point 
— is quite limited. 

Due to the discrete nature of the problem, there are likely to be some years in which funds are not fully spent 

because the next cheapest shift into a budget-constrained year from a year with a higher  value would 
exceed the constraint. Say the constraint in year five was $10 million, and the penalty factor optimisation 
method assigned treatments worth $9.6 million to year five with the cost of the last treatment assigned at 

$0.1 million. The next cheapest shift into year five, from another year in which funds are scarcer (a higher  
value), involved a single treatment costing $0.5 million. This shift would not be made because it would 
increase year-five spending to $10.1 million, which exceeds the constraint. Allowing the genetic algorithm to 
finesse the solution by testing solutions with different options for each segment, it could be found that the 
network PVTTC is reduced by shifting the $0.1 million treatment from year five to another year in order to 
make room for the $0.5 million treatment in year five. The $10 million constraint in year five would then be 
fully utilised. 

6.3 Implementing the methodology 

For each segment, the stage 1 optimisation passed to stage 2 a list of all options that were technically feasible 
(the ‘all-options list’), each with present values of total, agency and user costs and treatment costs. Stage 2 
involved reducing this to a list of non-dominated options. The list of non-dominated options was built up 
starting with the first option in the all-options list as the seed. Beginning with the second option in the all-
options list, each option in the all-options list was in turn compared with every option in the non-dominated 
list. If it dominated one or more members of the current non-dominated list, the dominated members were 
removed from the list. If was not itself dominated by any members of the non-dominated list, it was added to 
the list. The process was complete after the last option in the all-options list had been compared with all 
options in the non-dominated list. Further detail is provided in Appendix B, Section B.2.  

Having obtained a list of non-dominated options for each segment in the database from the model 
implemented in Mathematica (stages 1 and 2), the remaining two stages (3 and 4) were undertaken using 
Excel linked to Evolver genetic algorithm software.  
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In stage 3, a penalty factor or  value had to be set for each of the m budget-constrained years, such that that 
spending in each year was within the budget constraint for that year. For each individual segment i, the 
spreadsheet was set up to select, from the list of non-dominated options, the option that minimises 
𝑃𝑉𝑇𝑇𝐶𝑖 + ∑ 𝑡𝑐𝑖𝑡

𝑚
𝑡=1  for the segment by itself. Each segment then had a single selected option. The sum of 

spending over all segments in each year gave total spending for the year. 

If all penalty factors were set at zero, the spreadsheet provided the unconstrained optimal solution with the 
option with the lowest PVTTC value selected for each segment. If the penalty factor for a given year was 
increased, the imposition of an additional penalty on costs for that year caused treatments for some 
segments to move out of that year as options were selected with treatments in other years. Although the 
model was discrete, it behaved almost as if it were continuous. Increasing the penalty factors for particular 
years is like pressing down on a viscous substance — the mass springs up on either side. However, unlike a 
physical substance, the total volume does not remain constant. Small reductions in annual spending 
constraints could save agency costs at the expense of users. However, large reductions in the early years 
increased overall agency costs due to the principle of ‘a stitch in time saves nine’. 

It proved impossible to set the penalty factors manually. Adjusting one penalty factor to cut spending in one 
year to meet a constraint caused increases in spending in other years, breaching the constraints in those years 
and requiring further adjustments. This is known as the ‘waterbed effect’. As the problem was non-smooth, a 
gradient (steepest descent) method could not be used. 

An Excel macro, which adjusted ’s downward by a specified proportion for all years where constraints were 
non-binding, and upward by the same proportion for all years for which spending was above the constraint, 
was able to iterate towards an approximate solution. The adjustment proportions were decreased as 
spending in each year approached the constraints. 

The Evolver genetic algorithm software was employed to complete adjustment of the 10 or 20 annual penalty 
factors. The objective was initially set to minimise the maximum extent to which constraints were exceeded, 

that is, to minimise 𝑚𝑎𝑥
𝑡

(∑ 𝑐𝑖𝑡
2034
𝑖=1 − 𝐵𝑡 , 0), where cit is the cost for segment i in year t and Bt the budget for 

year t. This identified the year with the greatest constraint violation and focused on reducing it. Once all 

constraints were met, the objective was changed to minimising the sum of ’s subject to the budget 
constraints. It was not necessary to minimise ∑ (𝑃𝑉𝑇𝑇𝐶𝑖 + ∑ 𝑡𝑐𝑖𝑡

𝑚
𝑡=1 )𝑛

𝑖=1  because the spreadsheet 
automatically selected the option that minimises 𝑃𝑉𝑇𝑇𝐶𝑖 + ∑ 𝑡𝑐𝑖𝑡

𝑚
𝑡=1  for each segment, given the penalty 

factors. 

It was important to take the optimisation process to the point where no further possible improvements could 

be made in terms of reducing  values. The budget constraints could be met by solutions that have much 

higher  values than necessary. Failure to ensure the constraints are met with the lowest possible  values 

leads to exaggerated MBCR estimates. This is why the step in which the sum of  values was minimised was 
essential. 

Stage 3 could have been undertaken within Mathematica by developing an algorithm along the lines of the 
Excel macro employed, however, Excel was necessary for Stage 4 undertaken using Evolver because Evolver 
only operates within Excel. As the number of variables was very large, one for each segment, it was necessary 
to use Evolver Industrial Edition, which can handle an unlimited number of adjustable variables.  

6.4 Case study results: annual budget constraints for 10 
years 

Table 6.3 shows results, in descending order of tighter uniform annual budget constraints, for the first 
10 years starting with the unconstrained result. 
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Table 6.3 Model results for 10-year uniform annual budget constraints 
($ millions) 

Year 1 2 3 4 5 6 7 8 9 10 11 12 

Constraints nil nil 

Spending 185.8 51.9 69.8 80.6 121.3 102.8 79.7 53.1 85.2 73.2 82.3 93.4 

Lambdas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

MBCRs 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
             

Constraints 100 nil 

Spending 3 99.6 99.8 99.3 98.4 98.8 97.4 98.4 88.3 66.4 81.9 95.6 82.5 

Spending 4 100.0 100.0 99.9 97.3 99.9 99.5 99.9 83.7 66.5 81.8 96.1 81.4 

Lambdas 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

MBCRs 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
             

Constraints 80 nil 

Spending 3 80.0 80.0 79.9 79.1 79.7 75.2 79.9 79.8 78.6 79.9 194.0 117.1 

Spending 4 80.0 80.0 80.0 80.0 80.0 80.0 80.0 79.7 79.4 79.9 187.4 117.0 

Lambdas 0.5 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

MBCRs 1.5 1.3 1.2 1.2 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0 
             

Constraints 60 nil 

Spending 3 60.0 59.9 59.7 60.0 60.0 56.0 59.6 59.9 59.6 55.4 477.1 109.5 

Spending 4 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 470.3 109.5 

Lambdas 1.4 1.0 0.7 0.5 0.4 0.3 0.2 0.1 0.1 0.0 0.0 0.0 

MBCRs 2.4 2.1 1.8 1.6 1.5 1.4 1.3 1.2 1.1 1.1 1.0 1.0 
             

Constraints 50 nil 

Spending 3 50.0 50.0 49.9 49.8 49.9 47.6 46.9 49.1 48.0 49.7 796.6 73.7 

Spending 4 50.0 50.0 50.0 50.0 50.0 50.0 50.0 49.5 50.0 50.0 788.0 72.9 

Lambdas 2.9 2.3 1.8 1.4 1.1 0.8 0.5 0.3 0.3 0.1 0.0 0.0 

MBCRs 4.0 3.4 3.0 2.6 2.3 2.0 1.7 1.5 1.4 1.2 1.0 1.0 
             

Constraints 40 nil 

Spending 3 39.8 40.0 39.8 40.0 40.0 39.9 34.8 40.0 39.9 39.7 1382.9 135.9 

Spending 4 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 39.9 1379.5 133.9 

Lambdas 7.7 6.4 5.2 4.3 3.9 2.8 1.8 1.2 0.9 0.6 0.0 0.0 

MBCRs 9.0 7.9 6.9 6.0 5.7 4.5 3.4 2.7 2.3 2.0 1.0 1.0 

Constraints 35.3 nil 

Spending 3 35.3 35.2 35.3 35.1 33.5 35.3 33.1 34.9 35.1 35.0 1619.5 288.3 

Spending 4 35.3 35.3 35.3 35.3 35.3 35.3 35.3 35.2 35.3 35.3 1615.9 287.9 

Lambdas 24.6 20.8 17.5 14.6 12.3 9.0 6.8 4.0 3.1 2.1 0.0 0.0 

MBCRs 26.5 23.4 20.7 18.1 16.0 12.4 10.0 6.5 5.4 4.2 1.0 1.0 

Notes: Spending 3 is results from the stage 3 optimisation using penalty factors. Spending 4 is results after the stage 4 optimisation 
letting the genetic algorithm select individual options. Although the budget constraints were imposed for years 1 to 10 only, 
years 11 and 12 are included the table to show how spending was pushed out into the first few unconstrained years. 

Spending levels for years 11 and 12 are included to show that imposing the constraints pushes out 
maintenance spending into the period immediately following the constrained period. The ‘spending 3’ rows 
are the results obtained from the stage 3 optimisation using only the penalty method. The ‘spending 4’ rows 
are results after the stage 4 optimisation in which the stage 3 solution was refined by having the genetic 
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algorithm select individual options. Also, shown are the annual MBCR values obtained from the penalty 
factors.  

The first set of constraints, at $100 million, is above the 10-year average annual spending level of 
$90.3 million for the unconstrained scenario. As the constraints were progressively tightened, the penalty 
factors had to be raised to induce more expensive shifts in treatment times. The lowest level of 10-year 
uniform annual budget constraint obtainable was $35.3 million, found by having the model adjust the penalty 
factors to minimise the maximum of the annual spending levels across the 10 years. This led to MBCRs above 
20 in the early years and a very large amount of spending pushed out into years 11 and 12. Indeed, the 
scenarios with budget constraints of $60 million per annum and below might be considered unrealistic 
because of the large increases in spending required in years 11 and 12 to catch up the backlog. 

The results for the $100 million constraints show that shifting $86 million of unconstrained first-year spending 
into subsequent years cost little. The MBCR for the first year with the $100 million constraint was only 1.2. 
The increase in PVTTC was just $4.5 million. The reason it was so low is that the model had shifted the year-
one treatments that were the cheapest to delay. Tightening of budget constraints at modest levels leads to 
gentle rises in MBCRs but extremely steep rises are required as constraints approach the limit. This 
relationship was observed in Chapter 5 for present value budget constraints. 

Also evident, is that, due to the higher demands for spending in early years (due to the maintenance backlog), 
annual budget constraints that are uniform across years require declining penalty factors starting from the 
highest in year one when demand for spending is greatest. Figure 6.1 plots the annual MBCR values under 
each set of budget constraints below $100 million showing the higher MBCRs associated with tighter 
constraints, and how they are highest in the first year and decline throughout the constrained period. 

Figure 6.1 Annual MBCR values for 10-year uniform annual budget constraints 

 

It is understood that actual spending on the case study network around the time the data was compiled was 
around $15 million to $20 million. It proved impossible to force the model to meet spending constraints in all 
of the first 10 years around this level. It was possible to force spending down to $20 million for the first five 
years with no constraints thereafter. Under the latter case, MBCRs for the five years averaged 10.0 with a 
backlog of spending in year six, the first unconstrained year, of $703 million. If only the first four years were 
constrained to $20 million, the average MBCR for the first four years averaged 4.1 and the backlog of 
spending on year five was $519 million. This illustrates how relaxing pressure on budgets in later years, lowers 
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MBCRs in earlier years. The MBCR values obtained from constraining a small number of years followed by a 
large backlog in the first unconstrained year are misleading because they are premised on an unrealistic 
assumption of unlimited financial and physical capacity to undertake work in the first unconstrained year. 

Table 6.4 shows the changes in present values caused by annual budget constraints compared with the 
unconstrained optimum. The increases in PVTTC show that loose budget constraints come at a small cost to 
society but then increase rapidly as the constraints approach the tightest possible level. It is interesting that 
PVAC is lower for the $80 million and $60 million per annum constraints but then increases steeply as the 
large amounts of catch-up spending after year 10 outweigh the cost savings to the road agency in the 
constrained years up to year 10. The catch-up spending after year 10 was so great as to make users better off 
in present value terms with the $35.3 million constraints. To ascertain why this occurs, model results for 
individual segments with lower PVUC values with tight constraints were examined in detail. It was found that 
less expensive treatments undertaken during the 10 constrained years under less constrained scenarios were 
being sacrificed at a cost of bringing forward in time more expensive treatments in the later unconstrained 
years. These more expensive treatments have much greater impacts on improving road roughness, which 
determines user costs. However, the required amounts of catch-up spending after year 10 were impractically 
high. 

Table 6.3 compares the results of the stage 3 and stage 4 optimisations for annual spending. The fourth-stage 
optimisation allowed Evolver to improve on the solution by selecting individual options for each segment. As 
can be seen in Table 6.3, in the stage 3 optimisation, lumpiness in the treatment options available prevented 
the model from fully utilising the budgets for some years. The stage 4 optimisation improved the utilisation of 
available budgets and the PVTTC values. 

Table 6.4 shows the improvements in PVTTC brought about by the stage 4 optimisation process with PVUC 
normalised to zero at the unconstrained option. The improvements were minor. Their size increased as the 
constraints tightened, where the model, in stage 3 using the penalty method, had less flexibility to shift 
treatments between years. The PVTTC gain was achieved by saving user costs at the expense of agency costs, 
because fully utilising constraints brings forward spending. The percentage of the 2034 of segments with 
treatments changed in stage 4 ranged from 2% to 6% depending on the set of constraints. 
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Table 6.4 Impacts on present values of 10-year uniform annual budget constraints and of stage 4 
optimisation 

($ millions) 

Constraints Optimisation stage PVTTC PVAC PVUC 

Nil  1902.48 1902.48 0 
     

100 

Stage 3 1906.97 1902.62 4.35 

Stage 4 1906.94 1902.97 3.96 

Improvement –0.03 0.35 –0.38 
     

80 

Stage 3 1921.02 1883.63 37.38 

Stage 4 1920.71 1885.01 35.70 

Improvement –0.30 1.38 –1.68 
     

60 

Stage 3 1974.19 1882.22 91.97 

Stage 4 1973.55 1883.09 90.45 

Improvement –0.64 0.88 –1.52 
     

50 

Stage 3 2048.68 1912.81 135.87 

Stage 4 2047.19 1913.78 133.41 

Improvement –1.49 0.97 –2.46 
     

40 

Stage 3 2258.35 2180.18 78.17 

Stage 4 2255.39 2180.44 74.95 

Improvement –2.96 0.26 –3.22 
     

35.3 

Stage 3 2514.63 2564.76 –50.13 

Stage 4 2510.59 2565.22 –54.63 

Improvement –4.04 0.46 –4.50 

Notes:  PVUC at the unconstrained optimum has been normalised to zero. Hence, PVUC values in the constrained scenarios are the 
excess over the PVUC value at the unconstrained optimum. The ‘improvement’ is the stage 4 present value result minus the 
stage 3 present value result.  

Table 6.5 again shows the present values with PVUC normalised to zero at the unconstrained optimum, but 
only after the stage 4 optimisation. It highlights the changes in the present values as the constraints were 
tightened and calculates incremental BCRs for annual budget constraints as defined in Chapter 3, Section 
3.4.5 as 

𝐼𝐵𝐶𝑅 = −
∆𝑃𝑉𝑈𝐶 + ∆𝑃𝑉𝐴𝐶 − ∆𝑃𝑉𝐵

∆𝑃𝑉𝐵
= −

∆𝑃𝑉𝑇𝑇𝐶

∆𝑃𝑉𝐵
+ 1 

where PVB is the present value of the constrained annual budgets, in this case over 10 years. The right-
most column shows the simple averages of the 10 MBCRs in Table 6.3 for the start and end constraint levels 
between each IBCR. With the exception of the comparison with the unconstrained scenario, the IBCRs 
between each pair of constraints lie between the average MBCRs for the constraints, which is to be expected. 
The reason for the exception in the case of the IBCR comparing the $100 million constraint with the 
unconstrained scenario, is that, for seven of the 10 years, unconstrained optimal spending was under the 
$100 million level, leaving a great deal of capacity to shift spending between years at little cost.30 

---------- 
30 Footnote 14 in Section 3.4.5 discussed and recommended against an alternative definition of the IBCR for increases in annual 

budget constraints with ΔPVAC in the denominator instead of ΔPVB. Using the alternative definition, the IBCRs for the six rows in 
Table 6.5 are –8.0, 1.8, 28.6, –1.4, 0.2, and 0.3 respectively. The high value of 28.6 occurred at the point where PVAC reached a 
minimum and then began to rise as budget constraints were tightened, causing ΔPVAC to be small at –$2 million. 
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Table 6.5 Present values and BCRs for 10-year uniform annual budget constraints 
($ millions) 

 Constraint PVTTC PVAC PVUC PVB IBCR Avg MBCR 

 – 1902 1902 0 747  1.0 

∆ – 4 0 4 –13 0.7  

 100 1907 1903 4 760  1.0 

∆ –20 14 –18 32 –112 1.1  

 80 1921 1885 36 648  1.1 

∆ –20 53 –2 55 –162 1.3  

 60 1974 1883 90 487  1.6 

∆ –10 74 31 43 –81 1.9  

 50 2047 1914 133 405  2.3 

∆ –10 208 267 –58 –81 3.6  

 40 2255 2180 75 324  5.0 

∆ –4.7 255 385 –130 –38 7.7  

 35.3 2511 2565 –55 286  14.3 

Notes: The values of PVTTC were calculated with PVUC set to zero at the unconstrained optimum as in Table 6.4. 
 PVB is the present value of road agency spending over the 10 constrained years after the last stage of optimisation. 
 The rows headed ∆ show differences between the rows just above and just below. 
 The IBCRs are comparisons between the rows just above and just below, not comparisons with the first row showing 

unconstrained spending. 
 The average MBCR is the simple average of the MBCRs for the 10 budget-constrained years in Table 6.3. 

6.5 Case study results: annual budget constraints for 20 
years 

Table 6.6 shows model results for three sets of constant annual budget constraints imposed over a period of 
20 years in the same format as for Table 6.3. The $100 million constraint scenario for 20 years is not shown 
because it is identical to the $100 million 10-year scenario. Under the 10-year $100 million scenario, optimal 
spending in all years from 11 to 20 was below the $100 million amount so no changes were needed to extend 
the constraints out for a further 10 years. 

Uniform constraints over the 20-year period at $80 million per annum could be considered ‘sustainable’ and 
gave rise to an MBCR of 1.5 in year one and no jump in spending in year 21. A ’sustainable’ level of spending 
could be defined as one where there is no jump in optimal spending just following the constrained period, or 
the jump is not so large that it cannot be caught up by continued spending at the sustainable level in in 
subsequent years. The lowest achievable uniform constraint over 20 years was $48.4 million, which lead to an 
MBCR of 21.4 in year one and a $0.9 billion demand for spending in year 21. A small easing of the constraint 
to $50 million lowered the year-one MBCR to 11.0 and but still left a $0.8 billion backlog of spending in 
year 21. 
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Table 6.6 Model results for 20-year uniform annual budget constraints 
($ millions) 

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Unconstrained 
spending 

185.8 51.9 69.8 80.6 121.3 102.8 79.7 53.1 85.2 73.2 82.3 93.4 62.7 65.8 35.1 37.0 76.0 46.8 48.6 54.0 49.0 37.1 

Constraints 80 nil 

Spending 3 80.0 80.0 79.8 79.4 79.8 79.5 78.1 79.0 79.2 79.6 77.0 77.9 79.0 70.8 79.7 61.4 78.5 74.9 78.8 72.7 61.7 44.4 

Spending 4 80.0 80.0 80.0 80.0 80.0 80.0 79.9 80.0 80.0 80.0 79.7 79.7 79.8 79.8 69.7 60.8 79.8 75.3 76.9 65.3 57.6 44.0 

Lambdas 0.5 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

MBCRs 1.5 1.3 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Constraints 60.0 nil 

Spending 3 59.7 60.0 60.0 56.7 59.9 60.0 59.1 58.4 57.3 59.8 58.8 44.3 57.5 55.4 57.1 58.8 59.9 59.5 59.1 52.9 524.7 81.5 

Spending 4 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 59.9 59.9 59.9 60.0 60.0 60.0 60.0 481.4 67.9 

Lambdas 2.4 1.9 1.5 1.2 1.0 0.8 0.6 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 

MBCRs 3.5 3.1 2.7 2.4 2.2 2.0 1.8 1.7 1.6 1.6 1.5 1.4 1.4 1.3 1.2 1.2 1.2 1.2 1.1 1.1 1.0 1.0 

Constraints 50 nil 

Spending 3 49.9 50.0 49.7 49.5 49.6 49.9 49.6 49.9 48.4 49.6 49.4 49.4 49.8 48.8 47.6 49.5 44.9 47.5 35.1 49.3 865.2 56.5 

Spending 4 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 49.9 50.0 50.0 830.3 56.8 

Lambdas 9.6 8.1 6.7 5.7 4.8 3.8 2.7 2.1 1.7 1.4 1.2 1.0 0.8 0.6 0.5 0.4 0.3 0.2 0.2 0.1 0.0 0.0 

MBCRs 11.0 9.7 8.6 7.6 6.8 5.8 4.6 3.9 3.4 3.1 2.8 2.5 2.3 2.0 1.8 1.7 1.6 1.5 1.4 1.2 1.0 1.0 

Constraints 48.4 nil 

Spending 3 48.3 48.4 48.2 48.3 47.6 45.9 43.7 48.3 48.1 45.8 48.3 48.2 48.4 47.0 47.4 35.9 48.0 48.4 47.7 26.7 965.3 81.0 

Spending 4 48.4 48.4 48.4 48.4 48.4 48.4 48.4 48.4 48.4 48.4 48.4 48.4 48.4 48.4 48.4 48.3 48.4 48.4 48.4 48.4 925.1 74.0 

Lambdas 19.7 16.8 14.3 12.2 10.6 8.8 5.9 4.1 3.4 2.8 2.3 1.9 1.6 1.2 0.9 0.7 0.6 0.5 0.5 0.3 0.0 0.0 

MBCRs 21.4 19.2 17.1 15.3 13.9 12.2 8.7 6.7 5.8 5.1 4.5 4.0 3.6 3.1 2.6 2.3 2.1 2.0 2.0 1.6 1.0 1.0 

Notes: Spending 3 is results from the stage 3 optimisation using penalty factors. Spending 4 is results after the stage 4 optimisation letting the genetic algorithm select individual options. 
Although the budget constraints were imposed for years 1 to 20 only, years 21 and 22 were included the table to show how spending was pushed out into the first few 
unconstrained years.  
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Table 6.7  Model results for 20-year rising annual budget constraints 
($ millions) 

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

                       

Constraints 30 40 50 60 70 80 90 nil 

Spending 3 30.0 39.3 49.8 60.0 68.8 79.5 90.0 88.8 89.2 83.2 88.4 65.5 81.9 89.5 83.3 89.9 81.8 67.7 89.9 80.7 244.2 36.8 

Spending 4 30.0 40.0 50.0 60.0 70.0 80.0 90.0 90.0 90.0 90.0 90.0 89.9 89.7 88.5 84.5 89.3 88.9 74.8 89.2 77.3 194.4 28.0 

Lambdas 3.8 2.9 2.3 1.8 1.3 1.0 0.7 0.5 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 

MBCRs 5.0 4.2 3.6 3.0 2.6 2.2 1.9 1.7 1.6 1.5 1.4 1.3 1.3 1.2 1.2 1.1 1.1 1.1 1.1 1.0 1.0 1.0 

                       

Constraints 25 30 40 50 60 70 80 90 nil 

Spending 3 24.9 30.0 40.0 49.9 52.2 69.9 79.8 88.4 90.0 89.7 88.3 90.0 72.2 87.4 61.4 87.7 84.6 79.5 84.6 72.9 532.7 43.4 

Spending 4 25.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 90.0 90.0 89.9 90.0 89.9 90.0 89.8 89.5 77.8 89.6 89.8 90.0 441.2 35.8 

Lambdas 19.5 13.7 10.6 8.5 7.0 5.4 3.7 2.3 1.7 1.3 1.0 0.8 0.6 0.4 0.3 0.2 0.2 0.1 0.1 0.1 0.0 0.0 

MBCRs 21.3 15.8 12.9 10.9 9.5 7.8 5.8 4.2 3.4 2.9 2.6 2.3 2.0 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 1.0 

                       

Constraints 20 30 40 50 60 70 80 90 nil 

Spending 3 20.0 29.8 39.4 49.8 54.7 69.8 78.3 88.2 89.9 90.0 85.2 89.7 89.7 89.9 74.6 89.6 86.6 89.6 86.3 89.3 664.0 55.9 

Spending 4 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 89.9 90.0 631.3 53.1 

Lambdas 66.2 38.8 28.2 23.0 19.5 15.5 11.1 6.5 4.5 3.4 3.0 2.3 1.6 1.2 0.8 0.6 0.5 0.4 0.3 0.2 0.0 0.0 

MBCRs 69.8 42.9 32.7 27.9 24.7 20.6 15.6 9.9 7.4 6.1 5.6 4.7 3.7 3.0 2.5 2.1 1.9 1.8 1.6 1.3 1.0 1.0 

Notes: Spending 3 is results from the stage 3 optimisation using penalty factors. Spending 4 is results after the stage 4 optimisation letting the genetic algorithm select individual options. 
Although the budget constraints were imposed for years 1 to 20 only, years 21 and 22 were included the table to show how spending was pushed out into the first few 
unconstrained years. 
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Extending the constrained period from 10 to 20 years caused the MBCRs in earlier years to be higher. To 
illustrate, for uniform annual constraints of $60 million and $50 million, the first-year MBCRs were 
respectively 2.4 and 4.0 for 10 constrained years and 3.5 and 11.0 for 20 constrained years. 

As with the 10 years of constraints, MBCRs for the 20 years declined over the constrained period, illustrated in 
Figure 6.2. 

Figure 6.2 Annual MBCR values for 20-year uniform annual budget constraints 

 

It was noted above that actual spending on the case study network around the time of the data was around 
$15 million to $20 million but spending on these levels could only be sustained for a few years given the 
technical constraints in the modelling. Where budget constraints are tight to the point that they cannot 
possibly be sustained for more than a few years, the most realistic approach may be to have the annual 
budget constraints gradually arising until they reach a sustainable level. Table 6.7 shows model results for 
rising constraints starting at $30, $25 and $20 million and increasing in steps to a constant level of $90 million 
for the remainder of the budget-constrained years. 

The increasing constraint scenarios shown gave rise to large spikes in spending in year 21, but this is far in the 
future and spending levels in year 22, and for subsequent years (not shown in the table), are well under the 
$90 million level. With funds so scarce in the early years, a small tightening of constraints in the early years 
requires a large increase in the penalty factors and hence the MBCRs. The second two rising constraint 
scenarios are identical for all years except year one, for which the constraint was tightened from $25 to 
$20 million. The year one MBCR increased enormously from 21 to 70 as large penalty factors needed to be 
imposed to force highly beneficial treatments out of the early years. Figure 6.3 illustrates the MBCRs over 
time with the increasing constraints. 
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Figure 6.3 Annual MBCR values for 20-year rising annual budget constraints 

 

Table 6.8 shows the changes in present values compared with the optimum for the six 20-year constraint 
scenarios in the previous two tables. 

The year-by-year results for the 20-year constraints in Tables 6.6 and 6.7 further illustrate the effect of the 
fourth and final stage optimisation in shifting lumpy treatments that can be moved at little cost between 
years to make use of unspent funds in some years following stage 3 of the optimisation process. Table 6.8 
shows the impact of the fourth stage on present values. Just as Table 6.4 showed for the 10-year constraints, 
the improvements are small but increase as the constraints become tighter. Percentages of the 2034 
segments with changed options ranged from 5% to 7% for the uniform constraints and 6% to 11% for the 
rising constraints. 
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Table 6.8 Impacts on present values of 20-year uniform annual budget constraints and of stage 4 
optimisation 

($ millions) 

Constraints Optimisation stage PVTTC PVAC PVUC 

Nil   1902.5 1902.5 0 
     

80 

Stage 3 1922.7 1868.9 53.8 

Stage 4 1922.3 1871.0 51.3 

Improvement –0.3 2.2 –2.5 

     

60 

Stage 3 2037.9 1806.9 230.9 

Stage 4 2033.2 1812.0 221.2 

Improvement –4.6 5.1 -9.7 
     

50 

Stage 3 2277.8 1820.3 457.6 

Stage 4 2272.0 1822.7 449.4 

Improvement –5.8 2.4 –8.2 
     

48.4 

Stage 3 2420.7 1853.0 567.7 

Stage 4 2403.3 1856.7 546.6 

Improvement –17.3 3.7 –21.0 
     

30 to 90 

Stage 3 2075.4 1864.1 211.4 

Stage 4 2070.0 1871.6 198.4 

Improvement –5.4 7.6 –13.0 
     

25, 30 to 90 

  

Stage 3 2319.9 1912.9 407.0 

Stage 4 2301.7 1920.9 380.8 

Improvement –18.2 7.9 –26.2 
     

20 to 90 

Stage 3 2472.8 1997.0 475.8 

Stage 4 2451.3 2002.7 448.6 

Improvement –21.5 5.7 –27.2 

Notes:  PVUC at the unconstrained optimum has been normalised to zero with PVTTC = PVAC + PVUC in all rows. Hence, PVUC 
values in for constrained scenarios are the excess over the PVUC value at the unconstrained optimum. The ‘improvement’ is 
the stage 4 minus and stage 3 present value result.  

Table 6.9 presents the present values for the 20-year uniform budget constraints in the same format as 
Table 6.4 for the 10-year constraints. Both tables show PVAC falling up to a point and then rising as the 
constraints were tightened. This is because, with tight constraints, the additional road agency spending 
required following the end of the constrained years to repair the neglect of the constrained years is high 
enough to exceed the savings from the budgets even after discounting. Again, the IBCR for each step is 
between the average of the annual MBCRs for the start and end constraint points over the constrained 
period, with the exception of the IBCR comparing the unconstrained and $80 million constrained scenario. 
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Table 6.9 Present values and BCRs for 20-year uniform annual budget constraints: Stage 4 optimisation 
($ millions) 

 Constraint PVTTC PVAC PVUC PVB IBCR Avg MBCR 

 nil 1902 1902 0 1084  1.0 

∆ – 20 –31 51 –24 1.8  

 80 1922 1871 51 1060  1.1 

∆ –20 111 –59 170 –245 1.5  

 60 2033 1812 221 815  1.7 

∆ –10 239 11 228 –136 2.8  

 50 2272 1823 449 679  4.2 

∆ –1.6 131 34 97 –22 7.1  

 48.4 2403 1857 547 658  7.7 

Notes: The values of PVTTC were calculated with PVUC set to zero at the unconstrained optimum as in Table 6.8. 
 PVB is the present value of road agency spending over the 20 constrained years after the last stage of optimisation. 
 The rows headed ∆ show differences between the rows just above and just below. 
 The IBCRs are comparisons between the rows just above and just below, not the first row with unconstrained spending. 
 The average MBCR is the simple average of the MBCRs for the 20 budget-constrained years. 

6.6 Case study results: minimising agency costs with annual 
budget constraints 

The next set of optimisations subject to annual budget constraints was for the cost–effectiveness analysis 
approach, minimising PVAC subject to maximum roughness constraints. 

In the first stage of the optimisation process, testing all options, the maintenance model was modified to 
minimise PVAC subject to maximum roughness constraints, discarding options that fail to meet the maximum 
roughness constraint. The remaining three stages — removal of dominated options, imposition of annual 
budget constraints with penalty factors, and solution refinement with a genetic algorithm — were the same 
as for PVTTC minimisation subject to annual budget constraints, but minimising PVAC and working only with 
options that met the maximum roughness constraint. 

After stage 2, there were 115 696 non-dominated options for the entire database, an average of 56.9 options 
per segment, with numbers of non-dominated options for individual segments ranging between 1 and 177. 

Table 6.10 presents the results for PVAC minimisation with 20-year annual budget constraints for four 
scenarios with the unconstrained spending results (that were shown in Figure 5.6) in the first row of spending 
amounts. The first set of results, for a uniform $68 million annual budget, left no spike in spending after 
year 20 and so might be considered at or above a sustainable level. The $61.8 million constraint for all 
20 years was the lowest uniform budget constraint that could be achieved while keeping pavements within 
the maximum roughness constraints. It seems that, compared with PVTTC minimisation, the loss of options 
caused by the maximum roughness constraints reduced the flexibility of the model to shift treatments 
between years and achieve lower annual budget targets. 

The other two scenarios involved tightly-constrained budgets in the early years compensated by higher 
spending several years later. Spending less in the early years raised the minimum achievable levels of 
spending in subsequent years. In the case of the $61.8 million uniform constraint, scenario B, spending was 
pushed into the year 20 and beyond. For scenarios C and D, the very tight constraints in the first few years 
made it impossible to reduce constraints a few years later to below $95.5 and $120 million respectively. 
However, spending needs reduced by year 17 or earlier. 
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Table 6.10 Model results for 20-year annual budget constraints minimising agency costs with maximum roughness levels 
($ millions) 

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Unconstrained 
spending 

161.5 33.0 49.2 58.3 80.1 52.0 12.5 37.0 57.4 79.5 51.7 59.2 102.7 72.7 43.4 67.0 68.8 56.7 34.1 60.5 52.8 52.4 

Scenario A                       

Constraints 68 nil 

Spending 3 68.0 67.9 67.7 67.9 67.9 65.7 67.6 61.5 65.5 63.1 67.4 66.2 61.9 66.6 57.6 68.0 68.0 62.7 29.5 57.2 53.7 48.5 

Spending 4 68.0 68.0 68.0 68.0 68.0 68.0 64.5 61.4 59.8 67.7 68.0 64.4 65.2 67.3 56.8 68.0 68.0 62.9 29.1 57.7 52.9 48.4 

Lambdas 0.7 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

MBCRs 1.7 1.6 1.4 1.3 1.2 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Scenario B                       

Constraints 61.8 nil 

Spending 3 61.8 61.8 61.8 61.8 61.8 61.5 61.7 61.4 61.8 57.2 59.4 60.3 47.5 56.4 59.7 51.8 46.2 48.1 61.1 56.1 231.8 117.9 

Spending 4 61.8 61.8 61.8 61.8 61.8 61.8 61.8 61.5 61.8 61.8 61.8 61.8 61.7 61.8 61.8 61.8 61.8 61.8 60.6 61.7 172.2 104.4 

Lambdas 10.1 8.2 7.0 5.9 5.1 4.3 3.0 2.6 2.4 2.3 2.2 1.9 1.8 1.6 1.3 1.3 1.4 1.2 0.4 0.3 0.0 0.0 

MBCRs 11.5 9.9 8.9 7.9 7.2 6.4 5.0 4.6 4.5 4.4 4.4 4.0 4.0 3.8 3.4 3.5 3.7 3.4 1.8 1.6 1.0 1.0 

Scenario C                       

Constraints 35 45 55 65 75 85 95 nil 

Spending 3 34.7 45.0 54.1 64.9 72.1 83.7 94.5 94.8 94.1 91.5 93.2 95.0 92.7 94.6 93.4 90.4 62.7 56.8 38.9 45.9 43.5 40.0 

Spending 4 35.0 45.0 55.0 65.0 75.0 85.0 95.0 95.0 95.0 95.0 95.0 94.9 94.6 94.8 80.6 94.6 57.0 54.2 32.9 45.6 40.9 43.1 

Lambdas 18.1 8.3 6.7 4.8 3.6 2.5 1.5 1.0 0.7 0.6 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

MBCRs 19.9 10.0 8.5 6.6 5.4 4.1 3.0 2.4 2.0 1.9 1.7 1.5 1.3 1.2 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 

Scenario D                       

Constraints 35 35 35 60 90 120 110 nil 

Spending 3 35.0 34.9 33.7 60.0 90.0 120.0 118.2 117.6 120.0 118.3 101.6 109.6 108.6 84.5 74.5 95.9 54.0 50.6 29.8 24.6 33.5 37.6 

Spending 4 35.0 35.0 35.0 60.0 90.0 120.0 120.0 120.0 119.9 120.0 109.6 110.0 109.7 96.5 59.7 96.8 47.4 43.5 25.2 19.4 25.0 38.8 

Lambdas 22.0 15.8 14.7 6.1 4.5 2.5 1.7 1.0 0.6 0.5 0.3 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

MBCRs 23.8 18.1 17.5 8.1 6.5 4.2 3.2 2.4 1.9 1.7 1.5 1.3 1.2 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Notes: Spending 3 is results from the stage 3 optimisation using penalty factors. Spending 4 is results after the stage 4 optimisation letting the genetic algorithm select individual options. 
Although the budget constraints were imposed for years 1 to 20 only, years 21 and 22 were included the table to show how spending was pushed out into the first few 
unconstrained years. 



 

107 
 

Section 3.5 on PVAC minimisation subject to road roughness constraints showed that the MBCRs derived from 
the penalty factors with the formula (1 + 𝑟)𝑡𝑡 + 1 indicate the net financial benefit to the road agency from 
spending an additional dollar of present value in a budget-constrained year (not counting the increase in PVAC 
from the extra dollar). 

Table 6.11 shows the present values for stages 3 and 4 with the improvements from the final stage. The 
improvements saved costs for both the road agency and road users, unlike PVTTC minimisation where the 
final stage increased road agency costs. Nevertheless, the changes in the present values were small. 

Comparing the PVAC minimisation results for the $61.8 million uniform annual budget constraints with the 
PVTTC minimisation results for the $60 million uniform annual budget constraints over 20 years, the former 
cost society an additional PVTTC of $368 million. This is comprised of $485 million of higher user costs, offset 
by a $116 million saving in PVAC.  

Table 6.11 Impacts on present values of 20-year annual budget constraints and of stage 4 optimisation for 
PVAC minimisation 

($ millions) 

Constraints Optimisation stage PVTTC PVAC PVUC 

Nil   1623.1 1623.1 0.0 
     

$68m uniform 

Stage 3 1644.3 1640.8 3.4 

Stage 4 1643.8 1640.7 3.1 

Improvement –0.5 –0.2 –0.3 
     

$61.8 uniform 

Stage 3 1749.4 1702.9 46.5 

Stage 4 1737.7 1695.4 42.3 

Improvement –11.7 –7.5 –4.3 
     

$35 m rising to $95m  

Stage 3 1773.8 1768.2 5.6 

Stage 4 1762.3 1762.3 0.0 

Improvement –11.5 –5.9 –5.6 
     

$35 m for 3 years rising to 
$120m  

Stage 3 1789.1 1829.7 –40.5 

Stage 4 1777.8 1825.7 –47.9 

Improvement –11.3 –4.0 –7.3 

Notes:  PVUC at the unconstrained optimum has been normalised to zero with PVTTC = PVAC + PVUC in all rows. Hence, PVUC 
values for constrained scenarios are the excess over the PVUC value at the unconstrained optimum. The ‘improvement’ is 
the stage 4 minus the stage 3 present value result.  

6.7 Simple triage method for year-one treatments 

An important lesson from the case study is that a substantial proportion of the first-year backlog can be 
deferred at little cost to road users and the road agency. The cost to society can be kept to a minimum by 
shifting treatments out of year one in ascending order of the cost of the deferral per dollar of year-one 
spending saved, until the budget constraint is met. The stage 3 optimisation methodology, using penalty 
factors, demonstrated in this chapter, does just that. 

A simple method to identify year-one treatments that can be deferred at little cost to society, and that can be 
readily applied by practitioners, is to apply a penalty factor to costs incurred in year one only. The practitioner 
still needs to start by identifying and costing a large number of options with different treatments at different 
times for all segments in the network. Then, starting with a small penalty factor for year one only, for each 
segment i, select options to minimise 𝑃𝑉𝑇𝑇𝐶𝑖 + λ1 𝑐𝑖1, where λ1 is the year-one penalty factor and ci1 is the 
cost of a treatment in year one. For segments with no treatment in year one in the optimal solution, there will 
be no change. Raising the penalty factor will cause some options that, in the optimal solution, have 
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treatments in year one, to be replaced with options with their first treatment in other years, reducing total 
spending in year one. The penalty factor needs to be increased to the point where the year one budget 
constraint is met. 

Table 6.12 illustrates the method with a simple hypothetical numerical example for a single segment. Four 
options are shown, labelled A to D, with PVTTC values increasing in columns further to the right. Options A 
and B have treatments in year one. Options C and D have treatments in years two and three, respectively. 
They all have treatments in subsequent years not shown in the table, for example a resurface in year 16. 
Option A, having the lowest PVTTC, is the most economic option without budget constraints. The second part 
of the table shows PVTTC + λc values computed from successive λ values rising from 0.1 to 0.4. Option A has 
the minimum PVTTC + λc value up to a λ value of 0.2. Above 0.2, option C has the minimum PVTTC + λc. So as 
the λ value is progressively increased, the year-one treatment for the segment will shift out of year one after 
the λ value rises above 2.0. 

Table 6.12 Numerical example illustrating simple triage method 
($’000) 

Option  A B C D 

PVTTC 1000 1010 1020 1030 

 Treatment costs by year 

Year     

1 100 100   

2   110  

3    120 

 Treatment costs in subsequent years not shown 

λ values 𝑃𝑉𝑇𝑇𝐶𝑖 + λ 𝑐𝑖1 

0.1 1010 1020 1020 1030 

0.2 1020 1030 1020 1030 

0.3 1030 1040 1020 1030 

0.4 1040 1050 1020 1030 

Note: Greyed cells are row minimums. 

Table 6.13 shows the number of numbers of treatments correctly and incorrectly identified for retaining in 
year one and for dropping from year one using the simple triage method for each of the PVTTC and PVAC 
minimisation scenarios in the previous three sections. In the case of $100 million annual budget constraints 
for 10 years, the simple triage method worked extremely well. Of the 646 treatments in the first year of the 
optimal solution, with alternative treatment options, only eight treatments were incorrectly excluded and an 
additional seven treatments were incorrectly added. For the $80 million PVTTC minimisation scenarios, the 
level of misclassifications was higher but might still be considered acceptable. Thereafter, as constraints were 
tightened further, the accuracy of the method deteriorated rapidly with the number of mistakes exceeding 
the number of correctly-identified treatments. As rough guide, Table 6.13 suggests that the simple triage 
method can only be recommended for penalty factors below roughly 0.15, but more case studies would be 
needed to confirm this. 

MBCRs calculated from the penalty factors under the simple triage method should be disregarded. They are 
only correct under the assumption of no budget constraints after year one. Imposing a penalty on year-one 
spending shifts much of the spike in year-one spending into year two, which will be just as unrealistic to 
implement as the spike in year one. 
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Table 6.13 Test results for simple triage method for year-one treatments for a single segment 

Constraint 
Penalty 
factor 

Number of treatments in year one a F-measure d 

  
Optimal 
solution 

Correctly 
identified 

(true 
positive) 

Incorrectly 
added 
(false 

positive) 

Incorrectly 
excluded 

(false 
negative) 

Correct 
segment with 

incorrect 
treatment 

type b 

 

Column no. c 1 2 3 4 5 6 7 

Unconstrained 0 1123      

PVTTC minimisation: 10-year constraints 

$100 m uniform 0.1243 646 638 7 8 0 99% 

$80 m uniform 0.1810 499 442 42 57 0 90% 

$60 m uniform 0.2429 339 244 74 94 1 74% 

$50 m uniform 0.2690 266 147 99 118 1 58% 

$40 m uniform 0.3066 172 59 116 111 2 34% 

$35.3 m uniform 0.3238 138 40 106 97 1 28% 

PVTTC minimisation: 20-year constraints 

$80 m uniform 0.1810 511 448 49 63 0 89% 

$60 m uniform 0.2429 358 220 111 137 1 64% 

$50 m uniform 0.2690 264 99 159 163 2 38% 

$48.4 m uniform 0.2769 255 90 153 163 2 36% 

$30 m rising 0.3565 155 64 54 90 1 47% 

$25 m rising 0.3854 100 38 63 61 1 38% 

$20 m rising 0.4682 66 32 35 33 1 48% 

PVAC minimisation: 20-year constraints 

$68m uniform 0.1417 367 332 35 35 0 90% 

$61.8 uniform 0.1665 257 199 105 58 0 71% 

$35 m rising to $95 m  1.5882 99 76 23 23 0 77% 

$35 m for 3 years 
rising to $120 m  

1.5882 107 72 27 35 0 70% 

a. Excludes segments where treatment in year one was the sole option. There were 17 such cases for PVTTC minimisation with 
10-year constraints, 4 for PVTTC minimisation with 20-year constraints, and 18 for PVAC minimisation with 20-year 
constraints. 

b. There were up to two cases in each row of the table where, for segments with multiple options with treatments in year one, 
the one-year penalty factor method chose the wrong treatment. 

c. Column 2 = column 3 + column 5 + column 6 
d. The F-measure or F-score is used to evaluate binary classification algorithms that classify instances into ‘positive’ or 

‘negative’. It is commonly used for evaluating information retrieval systems and machine learning models. 
The F-measure is the harmonic mean of  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
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=
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2
1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+

1

𝑅𝑒𝑐𝑎𝑙𝑙

. 

The simple triage method could be applied to all options from the stage 1 full enumeration without 
undertaking the stage 2 removal of non-dominated options. Having cut down year-one spending, the method 
could then be applied to identify treatments to defer in year two and so on. However, the number of errors 
would increase, and the size of the required spending cut, and hence of the maximum acceptable penalty 
factor, should be further limited. 
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6.8 Measuring maintenance deficits 

Reporting a ‘maintenance deficit’ draws attention to under-funding of maintenance. This section identifies a 
number of ways to express maintenance deficits and discusses their advantages and disadvantages. All 
measures involve comparisons between recent, current or forecast actual spending and future spending 
needs as forecast by a model. Future spending needs can be estimated at economically-optimal levels or at 
the level required to meet a set of minimum standards, without or with budget constraints. 

6.8.1 First year optimal spending 

The year-one backlog found by an optimisation without annual budget constraints could be used to indicate 
of the size of the maintenance deficit. Optimal year-one spending was $186 million in our case study, 
compared with a $90 million annual average spend over the first 10 years. For minimising PVAC subject to 
maximum roughness standards, the year-one spending need was $162 million compared with a $62 million 
average over the first 10 and 20 years. However, a large year-one number can overstate the urgency with 
which the backlog needs to be addressed. The economic and technical warrant for undertaking the backlog of 
works in the first year varies from borderline to essential. The $100 million annual budget constraint scenario 
showed that $86 million of the first-year spending could be deferred to subsequent years for a relatively small 
cost of a $4 million increase in PVTTC (Table 6.5), with a very low year-one MBCR of 1.2 (Table 6.3). For PVAC 
minimisation, the $68 million constraint scenario increased PVAC by $18 million (Table 6.11) with a year-one 
MBCR for the road agency of 1.7 (Table 6.10). The implication is that roughly half of the first-year backlog 
consists of treatments that could be deferred at a small cost. First-year optimal spending is therefore not 
recommended as a maintenance deficit measure on the grounds that it could be unduly alarmist. 

6.8.2 Comparisons with forecast spending 

More balanced indicators of spending needs would be based on forecasts for a number of years into the 
future expressed as an annual sustainable, average annual or the present value of spending needs. 

The concept of a ‘sustainable’ level of spending was defined in Section 6.5 as a constant annual level that does 
not leave a large backlog at the end of the constrained period or the backlog is not so large that it cannot be 
caught up by continued spending at the sustainable level in in subsequent years. It was shown that the 
sustainable levels for our case study network were of the order of $80 million per annum for PVTTC 
minimisation and $68 million for PVAC minimisation subject to minimum standard constraints. These are 
somewhat above the average 20-year spending requirements in the absence of budget constraints — 
$75 million and $62 million respectively. The average spending level therefore is likely to be a more 
conservative estimate of requirements than the sustainable level. 

Tsunokawa and Ul-Islam (2003) defined to the maintenance gap ratio (MGR) as 

𝑀𝐺𝑅 = 1 −
𝑃𝑉𝐴𝐶𝑏𝑢𝑑𝑔𝑒𝑡

𝑃𝑉𝐴𝐶𝑜𝑝𝑡
 

where PVACopt is the present value of unconstrained economically-optimal maintenance spending by the 
road agency and PVACbudget is the present value of the maintenance budget over the analysis period. A budget 
that fully met optimal maintenance needs would have an MGR of zero. The MGR is the proportion of funding 
needs that will not be met. The more constrained the budget, the higher the MGR, up to a maximum of one 
where no maintenance is undertaken at all. 

Estimation of the MGR requires assumptions to be made about the size of future budgets over the entire 
optimisation period, which was 40 years for Tsunokawa and Ul-Islam (2003, p. 197) — a very long-range 
forecast. The period over which the present values are calculated could be shortened to say 10 or 20 years. To 
avoid the need for assumptions about budgets in the distant future, we suggest defining the MGR as  

𝑀𝐺𝑅 = 1 −
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑟 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑎𝑛𝑛𝑢𝑎𝑙 𝑠𝑝𝑒𝑛𝑑𝑖𝑛𝑔

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑛𝑛𝑢𝑎𝑙 𝑠𝑢𝑠𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝑠𝑝𝑒𝑛𝑑𝑖𝑛𝑔
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In our case study, if $80 million was the sustainable level, as proposed in Section 6.5. If $30 million was 
available to spend each year, the MGR would be 62.5%.31 The maintenance gap could also be reported simply 
as the money amount by which the annual current spending level falls short of the sustainable level. 

6.8.3 Marginal benefit–cost ratio 

If likely annual spending could be specified for a number of years into the future, such as the first 10 or 20 
years, annual MBCRs can be forecast. As discussed in Chapter 3, MBCRs show the economic value to society of 
putting additional funds into maintenance in specific years and can be compared with benefit–cost ratios for 
capital spending. IBCRs can also be used indicate the value of a specified spending increase in one or more 
years compared with the alternative. While funding to the level of the economic optimum might be 
considered an unrealistic goal, there is a strong case for funds to be allocated to achieve an MBCR for 
maintenance the same as for capital investment, as explained in Chapter 3. The amount of maintenance 
spending consistent with an average MBCR over the constrained period equal to the MBCR for investment 
spending could be made the standard of comparison to indicate the extent of a maintenance deficit. 

6.8.4 Equivalent interest rate for deferred maintenance 

Naudé et al. (2008) and (2012) used a case study to demonstrate that, in a situation of tight annual budget 
constraints, savings in the present values of road agency and road user costs can be made by bringing forward 
maintenance interventions. Under the ‘Accelerated Road Rehabilitation Program’, the Queensland state 
government’s treasury department provided loans to the road agency, which the road agency repaid with 
interest out of future budget allocations. There was a net saving to the road agency as well as to road users. 
The case study illustrates that, in the long term, governments may be better off borrowing funds to avoid 
deferring maintenance.  

Deferring maintenance can be seen as a form of borrowing. Funds are saved in the short-term at the expense 
of higher outlays in the future. A way to communicate this to decision makers and enable comparison with 
the alternative of borrowing to fund maintenance would be to estimate an ‘equivalent interest rate for 
deferred maintenance’ (EIRDM). 

It is assumed that funds are constrained to the point where only minimum acceptable pavement conditions 
can be provided. The required modelling would be the same as for our case study for minimising PVAC subject 
to maximum roughness constraints. To use higher standards to estimate the EIRDM might be misleading 
because, if roads were allowed to deteriorate below the specified higher minimum standards and never 
restored to those standards, the equivalent loan would never be repaid in the sense of the road agency having 
to spend more later to compensate for spending less in the short term. The minimum standards could be set 
using expert judgement with the aim of ensuring each road is just able to fulfil its economic and social 
purposes. Since the objective is to minimise costs to the government rather than to maximise economic 
efficiency, the interest rate at which the government can borrow should be used as the discount rate in the 
optimisation model rather than the social discount rate. 

Table 6.14 uses the forecast spending levels in Table 6.10 to illustrate calculation of EIRDMs. Scenarios A and 
B are taken as two alternative sustainable constant levels of future spending and scenarios C and D as 
spending profiles that save funds in the early years but require much higher levels of spending in later years to 
avoid any segments falling below the minimum roughness levels. 

The four columns show differences for the four possible comparisons between the constant and variable 
spending scenarios. They were derived simply by subtracting the spending after stage 4 optimisation in the 
rows in Table 6.10 for scenarios C and D, from the spending after the stage 4 optimisation for scenarios A and 
B. For example, in year one, by choosing scenario C over scenario A, the road agency spends $35 million 
compared with $68 million, a saving of $33 million. In year two, the saving is $68 million – $45 million = 

---------- 
31 Provided the annual spending amounts are constant over time, the annual amounts can be entered into the MGR formula because 

the present values will be proportional to the annual amounts. 
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$23 million. By year five, spending under scenario C has risen above spending under scenario A so the saving 
is $68 million – $75 million = –$7 million. In effect, from year five on, the road agency is repaying its 
borrowings. The negative net cash flows continue in all four cases up to year 17 when the maintenance 
backlog is fully caught up. 

Table 6.14 Differences between spending under scenarios in Table 6.10 and internal rates of return 

 A – C A – D B – C B – D 

Internal rate of return over 40 years 19.2% 24.4% 27.1% 31.2% 

Internal rate of return over first 17 years 19.4% 24.8% 28.1% 31.7% 

Year  Cash flow ($ millions) 

1 33 33 27 27 

2 23 33 17 27 

3 13 33 7 27 

4 3 8 –3 2 

5 –7 –22 –13 –28 

6 –17 –52 –23 –58 

7 –30 –55 –33 –58 

8 –34 –59 –34 –59 

9 –35 –60 –33 –58 

10 –27 –52 –33 –58 

11 –27 –42 –33 –48 

12 –31 –46 –33 –48 

13 –29 –44 –33 –48 

14 –28 –29 –33 –35 

15 –24 –3 –19 2 

16 –27 –29 –33 –35 

17 11 21 5 14 

18 9 19 8 18 

19 –4 4 28 35 

20 12 38 16 42 

21 12 28 131 147 

22 5 10 61 66 

The table shows the internal rates of return (IRRs) for the four cash flows for all 40 years of the analysis 
period, including depreciation at the end of year 40, and for the first 17 years just after the period of negative 
cash flows ends. Whether it is calculated over the first 17 years or the whole analysis period makes little 
difference to the IRR. 

The IRR is the discount rate that makes the present value of the cash flows zero. In this case, it shows the 
interest rate the road agency would pay if it maintained spending at a constant sustainable level and 
borrowed to achieve the same cash flow as under a variable spending scenario. The lender would earn 
interest of the order of 20% to 30%, which is extremely high. If the road agency were to maintain spending at 
a constant level and borrow at the interest rate available to the government, it could achieve the same cash 
flow in the early years and have much less to pay back later. This type of analysis could be used by a road 
agency to justify government borrowing to fund maintenance in the short term. 
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Figure 6.4 plots the spending amounts under scenarios A and D from Table 6.10. The gap between the two 
curves for the first four years is the amount gained by the road agency by adopting scenario D compared with 
scenario A (A – D). The gap between the two curves from years five to 17 is the amount forgone. To make the 
present value of these two areas, one positive and the other negative, equal to zero, the discount rate has to 
set at 24.8%. At any lower discount rate, the loss from years five to 17 exceeds the gain from years one to four 
producing a negative net present value. If the road agency adopted scenario A and borrowed during years one 
to four to make spending in those years the same as for scenario D, as long as interest rate was below 24.8%, 
it would experience lower cash outflows from years four to 17 while repaying the loan compared with 
scenario D. In other words, so long as the road agency can borrow at an interest rate below 24.8%, it will be 
better off following scenario A and borrowing to fund early maintenance within budget constraints.  

Figure 6.4 Spending under scenarios A and D up to year 17 

 

6.9 Conclusion 

The case study of optimising maintenance subject to annual budget constraints has shown that the four-stage 
methodology developed can cope with a large database of road segments. Indeed, as long as computational 
limits are not exceeded, a larger database is better because the discrete optimisation problem bears a closer 
resemblance to a continuous problem, and so is more amenable to application of the penalty method. 

The difficulty of the task increases with the number of years for which budget constraints are imposed 
because fewer options can be eliminated as dominated in stage 2 of the optimisation and there are more 
penalty factors to set in stage 3. However, a short period of budget constraints can be unrealistic where it 
results in a large backlog of expenditure in the year immediately following the constrained period. 

Stage 4 of the optimisation makes only a small improvement in terms of the objective function while more 
fully utilising available budgets. The contribution of stage 4 is greater for tighter budget constraints because 
the penalty method has less flexibility in stage 3 to shift treatments between years to achieve the best 
outcome. In practical applications, stage 4 can reasonably be omitted, except in cases of very tight budget 
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constraints or a relatively small number of segments in the database leading to significant lumpiness in 
options. 

From the penalty factors for each year, annual MBCRs can be obtained using the formula given in Chapter 3. 
With uniform and rising annual budget constraints, annual MBCRs tend to be highest in the first year, when 
the demand for funds is greatest, then progressively decline. 

As annual constraints were tightened, PVAC fell initially, and then rose as the additional costs in later years to 
recover from the underspending in early years predominated. Progressive tightening of annual budget 
constraints at first required only small penalty factors, and hence annual MBCR estimates, but then rose 
rapidly. 

Optimisation subject to loose budget constraints, for example, set at a level around or somewhat above the 
10-year or 20-year average annual optimal spending in the absence of budget constraints, shows that a large 
portion of the year one backlog can be deferred at only a small economic cost. This is because the stage 3 
optimisation process, using penalty factors, selects treatments to defer on the basis of the lowest cost in 
terms of the objective function. 

This leads to the idea of a simple triaging method to prioritise year-one treatments for deferral in order to 
meet a budget constraint. Application of a penalty factor for the first year alone can be used to identify 
treatments to defer that fairly accurately accord with the recommendations arrived at by application of the 
penalty method over a number years, provided that the budget constraint is not too tight. The case study 
suggested the method works satisfactorily for constraints up to roughly half the first-year backlog or a penalty 
factor not exceeding 0.15. 

A number of ways to measure maintenance deficits were considered. The year-one backlog can be misleading 
as a maintenance deficient measure because a major portion of the backlog can be deferred at little cost. 
Better guides are comparisons with a sustainable level of spending or optimal spending averaged over 10 or 
20 years, compared with current or forecast spending. Annual MBCRs are useful. The ‘equivalent interest rate 
for deferred maintenance’ (EIRDM) can be used to convey to decision makers that deferring road 
maintenance to save funds in the short term is akin to borrowing money that has to be repaid later, but it can 
be very expensive. It is better to keep maintenance at a sustainable level by borrowing at the interest rate 
available to the government and repay it later. 
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7. Review in light of study objectives 
This final chapter of the report summarises the main contributions of the report and recaps it with regard to 
the five objectives set out in the introduction. 

7.1 Report’s contributions 

The voluminous literature on road maintenance optimisation comes almost entirely out of the civil 
engineering discipline. While drawing heavily on that literature, the present report addresses road 
maintenance from the perspective of the economics discipline. The report focuses only on the cost 
minimisation objective rather than the non-monetary objectives found in the engineering literature such as 
weighted area under a performance curve. It applies Lagrange’s method for optimisation subject to 
constraints, which is very familiar to economists. Only one article in the literature has used this approach to 
optimise subject to annual budget constraints. 

A road maintenance optimisation exercise with a long analysis period and a large number of road segments to 
consider together faces the ‘curse of dimensionality’, due to the astronomically large number of possible 
options with different treatment types in different years. The principle ways in which the case study in this 
report has managed the curse of dimensionality has been first, excluding all options with implausibly short 
intervals between treatment times, and second through a multi-stage optimisation process. The pavement 
optimisation literature to date discusses only two-stage approaches, the first stage being to identify the best 
one or more treatment options for each segment individually, and the second stage, to select options to fit 
within annual budget constraints. In the literature to date, the second stage of the optimisation has been 
undertaken using prioritisation methods, which are not guaranteed to find the best possible solution. The 
present report, therefore, has introduced some significant innovations in road maintenance optimisation 
enabling large databases of segments to be optimised subject to annual budget constraints. 

The economic value of capital projects can be assessed using cost–benefit analysis (CBA), which produces the 
widely-recognised measures of net present value (NPV) and benefit–cost ratio (BCR). Road maintenance does 
not fit well into the CBA framework that compares a do-minimum base case with one or a small number of 
project options. For each road segment, there are alternative treatment types that can be applied with 
different intensities and that can be implemented in different years, giving rise to a huge number of potential 
treatment options. There is arbitrariness in choosing the do-minimum base case. The maintenance 
optimisation literature does not provide a way to indicate the economic value of spending on maintenance 
comparable with the BCR of a construction project. The present report has proposed the marginal benefit–
cost ratio (MBCR) for maintenance. The MBCR for a given year indicates the economic value of additional 
maintenance funding in that year and is comparable with BCRs for capital projects. The report sets out the 
economic interpretation of the values of Lagrange multipliers or penalty factors at the constrained optimum 
for a number of segments optimised together and shows how to convert them to MBCRs. 

The report discusses ways in which the extent of underfunding of maintenance can be assessed and brought 
to the attention of decision makers. The first-year backlog of spending estimated by a maintenance model is 
not recommended because it is likely that a significant proportion of that expenditure can be deferred at only 
a small economic cost. Forecast annual average or sustainable spending needs over the next 10 or 20 years 
are preferable and can be compared with current and expected future annual spending levels. A ’sustainable’ 
level of spending was defined as one where there is no jump in optimal spending just following the 
constrained period, or where the jump is not so large that it cannot be caught up by continued spending at 
the sustainable level in subsequent years. 

The equivalent interest rate for deferred maintenance (EIRDM) concept highlights the cost of deferring 
essential maintenance. It requires specification of the lowest acceptable conditions for the network. Spending 
at unsustainably low levels over the first few years of the analysis period necessities greater spending in later 
years to keep the network at the lowest acceptable condition. Saving funds in the short term in exchange for 
higher outgoings in the long term is akin to borrowing. However, borrowing by skimping on maintenance can 
be expensive because the additional costs incurred later far outweigh the short-term savings even with 
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discounting. Taking the difference in cash flow profiles between a spending scenario with a short-term saving 
followed by higher catch-up spending later, and a scenario with constant annual spending at a sustainable 
level, and estimating the internal rate of return for the difference gives the equivalent interest rate for this 
from of borrowing. The case study results presented in Chapter 6 suggest it is likely to be well above the rate 
at which the government can borrow funds. In such cases, deferring maintenance because of short-term 
budget constraints is short-sighted and is a false economy. 

7.2 Review of maintenance economics 

Objective: to review the economic principles of road maintenance including the timing, form and quantity of 
maintenance 

The economics of road maintenance centres on identifying treatment types, times and intensities that 
minimise the present value of costs to society, subject to technical and budget constraints. Cost minimisation 
achieves economic welfare maximisation so long as it can reasonably be assumed that changes in road user 
costs over the relevant range will not lead to changes in traffic levels or vehicle mixes. Since travel decisions 
are made on the basis of whole-of-trip costs and a whole trip uses numerous road segments, this will usually 
be a satisfactory assumption. 

Economic optimisation of road maintenance involves trading off savings in road agency costs from less intense 
maintenance treatments undertaken less frequently, against resultant higher costs to road users. The 
optimisation problem is to minimise the sum of the present value of road user costs (PVUC) and the present 
value of road agency costs (PVAC), referred to as the present value of total transport costs (PVTTC). PVAC 
increases as more maintenance is undertaken and PVUC decreases, giving rise to a U-shaped PVTTC curve, 
obtained by summing the PVAC and PVUC curves. The minimum point of the U is the optimum. 

The report also investigated a cost-effectiveness approach preferred by some road agencies whereby PVAC is 
minimised subject to road condition not falling below exogenously set levels. 

The report has focused exclusively on periodic maintenance of sealed roads with flexible pavements. Routine 
maintenance is left to be treated as an annual spending requirement per square metre or lane-kilometre of 
road. For periodic maintenance treatments, optimisation models are used to select treatment types and 
timings either for individual road segments considered alone or for networks of segments considered 
together. A wide range of model simplifications and optimisation techniques have been applied to address 
‘the curse of dimensionality’ in maintenance optimisation. 

Road maintenance optimisation models typically find a large amount of spending to be warranted in the first 
year of the analysis period to catch up on the backlog, followed by smaller amounts in succeeding years. The 
amounts in succeeding years can then fluctuate widely. Optimisation subject to annual budget constraints is 
usually needed reduce and smooth out annual spending to fit within funding and physical input constraints. 

Key points about the economics of road maintenance highlighted in the report are as follows. 

• Higher road user costs (both cost per vehicle and the number of vehicles) justify higher standards of 
maintenance, hence it is economically warranted to keep higher trafficked roads in better condition. 

• Higher costs of maintenance treatments justify lower maintenance standards. 

• Higher discount rates justify deferring maintenance leading to an optimum with undiscounted higher road 
user costs and lower undiscounted road agency costs. 

• The length of the analysis period can affect treatment selection by a model. The effect can be reduced by 
choosing an analysis period that goes well beyond the period of interest (the ‘focus period’) and by 
including, with agency costs, a condition-related residual value or depreciation cost at the end of the 
analysis period. A condition-related depreciation cost or residual value to a certain extent simulates the 
omitted PVTTC from the time after the end of the analysis period to infinity. Sensitivity tests involving 
shorter analysis periods showed that depreciation is not a very good substitute for a longer analysis 
period. There ought to be some years between the focus period and the end of the analysis period to 
dampen the effect of the highly approximate nature of depreciation amounts. 
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• If treatment intensity is made a continuous variable in modelling (for example, overlay thickness), a 
corner solution is likely with the model choosing either the costliest, most effective treatment intensity or 
the least costly, least effective treatment intensity permitted. The latter would be applied as frequently as 
allowed. If a large number of discrete treatments are specified with different trade-offs between 
implementation cost and effectiveness in improving pavement condition, it is likely that some or many 
treatment types will never be selected because they are ‘dominated’ by others with better cost–
effectiveness trade-offs. It is therefore preferable to have a small number of treatment type alternatives 
in the model, not only from the computational point of view. 

• Light budget constraints can be imposed with little economic cost provided treatment times and types are 
optimised within those constraints. A substantial part of the year-one backlog may be deferred for a short 
time at a small economic efficiency cost provided treatments are prioritised for deferral in ascending 
order of impact on PVTTC per dollar of treatment cost. However, the economic costs of imposing budget 
constraints rise steeply, at a more than an exponential rate, as the constraints are progressively 
tightened. 

• Constraining spending in some years pushes maintenance expenses into other years. A period of tight 
annual budget constraints, say for 10 years, will lead to a large spike in economically warranted spending 
in the year immediately after the constrained period, for example, in year 11 after 10 years of constraints. 

• The proverb ‘a stitch in time saves nine’ applies. Constrained spending that causes maintenance to be 
deferred, can increase road agency costs in both undiscounted and present value terms by more than the 
amount saved in the constrained years. 

• Optimising pavement strength together with maintenance, only discussed at the theoretical level in the 
report, involves the same principles as for road user and road agency costs in maintenance. Stronger 
pavements save future maintenance costs and conversely, giving rise to a U-shaped total cost curve. If 
maintenance funds are scarcer than capital funds, while the ‘first-best’ solution is to equalise the scarcity 
to obtain similar MBCRs for capital and maintenance spending, a ‘second-best’ solution is to use some of 
the less scarce capital funds to build stronger pavements. 

• Optimal incentives in maintenance contracts, also addressed only at a theoretical level in the report, 
require the contractor’s remuneration to vary negatively with road user costs, which internalises the 
additional costs to users of driving on rougher pavements and the savings to users of driving on good 
quality pavements. 

7.3 Strategic-level needs assessment 

Objective: to identify an effective approach for assessing current and future spending gaps in road 
maintenance at a strategic level 

The report developed a methodology that was applied to a large database of 2034 road segments.  

Data on the network to be assessed was obtained at the level of short segments of road, assumed to be 
homogeneous. Required data for individual segments included 

• Traffic — AADTs and growth rates by vehicle type (cars and several categories of heavy vehicles) 

• Climate / environment — mean monthly precipitation, Thornthwaite moisture index 

• Road characteristics — segment length, carriageway width, paved area including shoulders, pavement 
type, divided or undivided 

• Road condition — surface age, percent cracked, pavement age, design and current pavement strength, rut 
depth and roughness. 

Design pavement strengths were unavailable. It was assumed that each road segment was designed to 
Austroads standards given the projected number of equivalent standard axle loads from heavy vehicles over 
the 30 years following the last rehabilitation or reconstruction given by the pavement age. 

Modelling was undertaken over a 40-year analysis period with a condition-related depreciation amount 
charged at the end of the analysis period. Three treatment types were specified — resurface, resurface with 
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shape correction, and rehabilitation. To reduce the number of possible treatment options to a manageable 
level, a minimum time interval of eight years between treatments was assumed. This was well below the time 
taken for new bitumen to begin to oxidise and crack, assumed to be 12 or 16 years depending on the type of 
pavement. 

The pavement deterioration model was a simplified version of the model within the World Road Association 
(PIARC) HDM-4 model, and the relationship between road user costs and roughness was taken from ATAP 
(2016). Good calibration of a maintenance model is essential. Values for HDM-4 calibration coefficients and 
assumptions for the three treatment types (cost per square metre and effects on pavement condition) were 
supplied by ARRB. 

Optimisation subject to annual budget constraints for the report’s case study was done via a four-stage 
process. 

1. Full enumeration of all options — up to 581,485 options for each segment given the three treatment types, 
a 40-year analysis period and an eight-year minimum time interval between treatments. 

2. For each segment elimination of ‘dominated’ options. Dominated options can never appear in an optimal 
solution because they can be replaced with another option that yields a lower PVTTC with no additional 
spending in budget constrained years. 

3. Imposition of annual budget constraints though minimising the sum of PVTTC and treatment costs 
multiplied by a penalty factor for each budget constrained year. Finalising the solution required a genetic 
algorithm to set the penalty factors to their lowest possible values while keeping spending within the 
constraints. 

4. Refinement of the solution using a genetic algorithm. 

7.4 Case study 

Objective: to undertake a case study to develop and test the identified methodology 

The case study was undertaken with data on 1977 kilometres of non-urban highways supplied by an 
Australian state government road agency. ARRB was engaged to curate the data into a suitable form for 
maintenance modelling and to undertake optimisation modelling to minimise PVTTC using the HDM-4 model. 
They also provided values for model calibration coefficients and advice on assumptions about treatment 
types, effectiveness and costs. 

Compared with case studies in the literature on maintenance optimisation surveyed in Chapter 4, the 
methodology applied in this report has been able to optimise over an exceptionally large number of segments 
(2034) and a long analysis period (40 years). The solutions with budget constraints are not guaranteed to be 
the perfect optimum, but very close. 

The model outputted a recommended list of treatment types and times for each segment, with treatment 
costs and present values of road user and road agency costs. Annual values for road condition measures and 
user costs could be extracted for all years in the analysis period. 

Results were obtained for 

• Minimising PVTTC with 

o no budget constraints 
o present value budget constraints 
o uniform annual budget constraints over 10 years 
o uniform and rising annual budget constraints over 20 years 

• Minimising PVAC subject to maximum roughness constraints with 

o no budget constraints 
o uniform and rising annual budget constraints over 20 years. 

Sensitivity tests were undertaken for changing the discount rate and pavement strength assumptions, and for 
a variety of changes to model details such as the analysis period. 
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7.5 Directions for national assessment 

Objective: to suggest directions for a comprehensive assessment of maintenance requirements for the national 
road network 

The approach could be followed for the non-urban parts of the national road network defined as the network 
of nationally-important road links determined under the National Land Transport Act 2014. Data on road 
condition needs to be assembled and linked with data on traffic, road characteristics and climate. Model 
calibration is required for different zones and to reflect the maintenance treatment types and costs for 
different jurisdictions and regions within jurisdictions. Most of the traffic and road condition data exist for 
national network roads as well as for state arterial roads. Application to local roads would be restricted by 
lack of data. Local roads comprise some 39% of the length of paved public roads in Australia (BITRE 2021, 
pp. 114 and 116)32. 

The model would not be applicable to urban roads without significant modifications. Quite different 
approaches would be required for concrete pavements and bridges.  

The model considered only periodic maintenance. Routine maintenance needs to be added on, estimated as a 
dollar amount per lane kilometre or square metre of pavement. The unit cost will vary with the location. 

Modelling requires 

• A pavement deterioration relationship or sub-model that forecasts future pavement condition depending 
on initial pavement condition, time, axle loads and the climate. 

• Specification of a small number of treatment types ranging from resurface to rehabilitation, each having a 
cost per square metre of pavement to implement and effectiveness in restoring pavement condition. The 
characteristics and costs of treatments will vary between and possibly within jurisdictions. The cost of a 
given treatment may be greater for pavements in poorer condition. 

• A user cost relationship that estimates costs of time, vehicle operation, crashes, and externalities as a 
function of roughness. The relationship between user costs and road condition needs more empirical 
research. 

• Specification of technical constraints to prevent the model extrapolating outside the realistic range. 

The pavement deterioration component of the BITRE model, though a simplified version of the deterioration 
model in HDM-4, was still quite complex. A very basic deterioration model consisting of just a few equations 
could be developed and might be satisfactory provided it was well calibrated. An essential feature of a simple 
model is that roughness increases more rapidly after cracking occurs, which ensures there is an economic 
justification for resurfacing treatments in the optimisation model. Having a very basic deterioration model 
would greatly speed up processing times.33 

Software used in the case study was Mathematica, Excel and Evolver. To process a large number of segments 
in a reasonable time, the model could be coded in a fast programming language such as Fortran or C++ and 
set up to process multiple segments in parallel as does Mathematica. To recode the BITRE model from the 
functional programming language of Mathematica to an imperative programming language would require 
some changes of approach. 

---------- 
32  This estimate is based on 2015 statistics, the latest published showing paved and unpaved roads. In the absence of a split for state 

and local roads into paved and unpaved roads, it was assumed that all unpaved roads were local roads. 
33  Regression analysis of model outputs from the case study in Chapter 5 suggests that a simple annual incremental deterioration 

model with only cracking and roughness would be ∆𝑅 = (0.0014 𝐴𝐶𝐴 + 0.029) 𝑅, where ACA is the percentage of surface 
cracked and R is roughness at the start of the year. The flat and convex parts of the cracking curve could be approximated by 
𝐴𝐶𝐴 = 𝐼𝑓[𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑔𝑒 < 𝐼𝐶𝐴, 0, 0.5 + 𝑘(𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑔𝑒 − 𝐼𝐶𝐴)2] where 0.5 is the percentage of cracking at the end of the year 
just before crack initiation, ICA is the time in years to crack initiation, and k is a constant. The case study model suggests the 
constant, k, is of the order of 0.3 for sprayed treatment pavements and 0.75 of asphaltic concrete pavements. The upper, concave 
part of the S-curve for cracking is unnecessary provided cracking is not permitted to go much above 50%. Analysts would need to 
recalibrate these relationships from local data or from outputs from a sophisticated calibrated model. 
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Setting the penalty factors at the minimum values that will cause the annual budget constraints to be satisfied 
is challenging because the problem is non-smooth and is subject to the ‘waterbed’ effect. A combination of 
Excel macros and the Evolver genetic algorithm was used to set the penalty factors for the case study, but it 
should be possible to develop an algorithm within the programming platform used for the model.  

As the stage 4 optimisation involved an extremely large number of variables, one for each segment, it was 
necessary to use Evolver Industrial Edition, which can handle an unlimited number of adjustable variables. 
Stage 4 could be omitted because the improvement in the solution is likely to be small and may not be 
warranted given the highly approximate nature of the exercise. In this report, the stage 4 optimisation served 
as a confirmation that the stage 3 optimisation worked well. Stage 4 may be worthwhile where there are very 
tight budget constraints or a relatively small number of segments in the database leading to significant 
lumpiness in the objective function. 

If identification of spending needs is only required in broad terms and budget constraints are light to 
moderate, the stage 1 optimisation alone may suffice. The year-one backlog could then be reduced to some 
extent without proceeding to further steps by using the simple triage method presented in Section 6.7 that 
applies the penalty method to the first year only.  

7.6 Maintenance versus capital expenditure 

Objective: to contribute to understanding the relative merits of expenditure on maintenance of existing 
infrastructure and investment in new infrastructure 

Investments in new infrastructure are assessed using CBA. The principal results are the NPV and the BCR. 
Whether the NPV is positive or negative indicates whether the investment is an economically efficient use of 
resources. The NPV is also used for selecting between mutually exclusive options for the same project, which 
is consistent with selecting the maintenance option with lowest PVTTC value for each individual road 
segment. The BCR indicates the ratio of dollars of benefit per dollar of cost (or resources) expended in present 
value terms. It is used to choose between projects where there is a budget constraint on capital spending. To 
obtain the maximum sum of benefits for a given capital spending budget, projects would be selected in 
descending order of BCR until the budget is used up. If capital spending was not too lumpy, the BCR for the 
last project accepted, or the ‘cut-off BCR’, could be considered to be the ‘marginal BCR’ (MBCR) for capital 
spending. The MBCR is the number of dollars of benefit society obtains from increasing the budget by one 
dollar. Hence, if the budget was restrictive enough so that no projects could be accepted with a BCR of 2 or 
less, then investing an extra $1 present value would yield an additional $2 present value of benefits. 

The present report has developed the concept of an MBCR for maintenance spending defined as the saving in 
the present value of user costs (expressed as a positive number) that results from a one dollar increase in 
PVAC. It can be expressed in terms of PVTTC. 

𝑀𝐵𝐶𝑅 = −
𝑑𝑃𝑉𝑈𝐶

𝑑𝑃𝑉𝐴𝐶
= −

(𝑑𝑃𝑉𝑈𝐶 + 𝑑𝑃𝑉𝐴𝐶)

𝑑𝑃𝑉𝐴𝐶
+

𝑑𝑃𝑉𝐴𝐶

𝑑𝑃𝑉𝐴𝐶
= −

𝑑𝑃𝑉𝑇𝑇𝐶

𝑑𝑃𝑉𝐴𝐶
+ 1 

Minimisation of PVTTC subject to a budget constraint expressed as a present value (PVAC ≤ B) is analytically 
not much more difficult than minimisation without a budget constraint. One has only to minimise the sum of 
PVUC and a weight times PVAC for each segment considered in isolation, and adjust the weight as necessary 
until the budget constraint for spending on all segments combined is just met. At the weighted-optimum 
solution, the value of the weight is the MBCR. 

For optimising subject to annual budget constraints, implementation of the penalty method, the third stage in 
the optimisation process, provides estimates of MBCRs for increasing funds in particular years. The 
methodology involves selecting the option for each segment that minimises PVTTC plus the sum of 
maintenance costs with costs in each year with a budget constraint multiplied by a penalty factor, that is, 
minimise 𝑃𝑉𝑇𝑇𝐶𝑖 + ∑ 𝑡𝑐𝑖𝑡

𝑚
𝑡=1  for each segment i where m is the number years with budget constraints, λt is 

the penalty factor for year t and cit is the maintenance cost in year t for segment i. The penalty factors are 
adjusted upwards above zero to disadvantage options with treatments in years when the demand for funds 
exceeds the supply. The penalty factor for year t, λt, in the optimal solution with all constraints met, can be 
interpreted as the saving in PVTTC from relaxing the budget constraint in year t by one dollar. The saving in 



 

121 
 

PVTTC from spending an additional dollar of PVAC in year t is (1 + 𝑟)𝑡𝜆𝑡. Hence, annual MBCRs can be 
derived from penalty factors using the relationship 

𝑀𝐵𝐶𝑅𝑡 = −
𝑑𝑃𝑉𝑇𝑇𝐶

𝑑𝑃𝑉𝐴𝐶
+ 1 = (1 + 𝑟)𝑡𝜆𝑡 + 1 

For large changes in spending in one or more years, an incremental BCR (IBCR) can be estimated from 

𝐼𝐵𝐶𝑅 = −
∆𝑃𝑉𝑇𝑇𝐶

∆𝑃𝑉𝐵
+ 1 

where ΔPVB is the change in the present value of spending in budget constrained years. 

If the MBCR for maintenance in a given year was above the cut-off BCR or MBCR for capital spending, then, 
additional net benefits could be obtained by shifting funds from the capital to the maintenance budget, and 
conversely. With the optimal split of funds, the MBCRs would be the same for capital and maintenance 
spending. 

7.7 Conclusion 

The present report should increase awareness of the importance of road maintenance and understanding of 
the economics of road maintenance. Future efforts to quantify the economic value of road maintenance will 
benefit from more up-to-date and comprehensive acquisition and management of data necessary for road 
maintenance modelling. Further model development and research into calibration values and the relationship 
between user cost and road condition will also contribute to the capacity for greater application of 
maintenance modelling. This should enable estimation of marginal and incremental BCRs comparable with 
BCRs of construction projects, which will support funding decisions. Data and modelling will also enable better 
estimation of the size of maintenance deficits and the costs of not addressing them. 
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Appendix A – Mathematics of present value 
minimisation subject to budget constraints 
This appendix supplements the material in Chapter 3 by presenting the detailed mathematics for minimising 
PVTTC subject present value and annual budget constraints, and PVAC subject to maximum roughness and 
annual budget constraints. In each case the envelope theorem is proved, that is, at the optimum, the 
Lagrange multipliers equal, not only the partial derivatives of the objective function with respect to the 
constrained variables, but also the total derivatives. 

Annual maintenance spending in year t, ct, is assumed to be continuous and PVUC and PVAC, and hence 
PVTTC, are assumed to be continuous functions of maintenance spending in each year, t, from one to infinity. 
This assumption is not realistic for a single road segment but it holds approximately for a large number of 
small segments considered together. 

A.1 Minimising PVTTC subject to a present value budget 
constraint 

The optimisation problem is Minimise 𝑃𝑉𝑇𝑇𝐶(𝑐1, 𝑐2, … , 𝑐t, … ) subject to 𝑃𝑉𝐴𝐶 ≤ 𝐵, where ct is maintenance 
spending in year t and B is the present value budget constraint. 

Since the constraints are inequalities, the Kuhn-Tucker conditions (also known as the Karush-Kuhn-Tucker 
conditions) for non-linear programming apply (Beavis and Dobbs 1990, p. 54).  

The Lagrangian is 

𝐿 = 𝑃𝑉𝑇𝑇𝐶(𝑐1, 𝑐2, … , 𝑐t, … ) +  [∑
𝑐𝑡

(1 + 𝑟)𝑡
− 𝐵

∞

𝑡=1

] 

where 𝑃𝑉𝐴𝐶 = ∑
𝑐𝑡

(1+𝑟)𝑡
∞
𝑡=1  

The first-order conditions for a constrained maximum are 

𝜕𝐿

𝜕𝑐𝑡
=

𝜕𝑃𝑉𝑇𝑇𝐶

𝜕𝑐𝑡
+



(1+𝑟)𝑡 = 0 for all t = 1 to              (A.1.1) 

𝜕𝐿

𝜕𝜆
= ∑

𝑐𝑡

(1+𝑟)𝑡
∞
𝑡=1 − 𝐵 ≤ 0  

 [∑
𝑐𝑡

(1+𝑟)𝑡 − 𝐵∞
𝑡=1 ] = 0                  (A.1.2) 

𝜆 ≥ 0  

The equation A.1.2 condition allows for situations where the budget is larger than the unconstrained 

optimum, in which case λ = 0 and 
𝜕𝑃𝑉𝑇𝑇𝐶

𝜕𝑐𝑡
= 0 for all t. When the constraint is binding, λ will have a positive 

value. In the two-period case, equation A.1.1 for years one and two, gives 

𝜕𝑃𝑉𝑇𝑇𝐶

𝜕𝑐1
𝜕𝑃𝑉𝑇𝑇𝐶

𝜕𝑐2

= 1 + 𝑟 as shown in Figure 3.5. 

The change in PVTTC from a series of small changes in spending in each year, such as would occur for a small 
change in the constraint on PVAC, is 

𝑑𝑃𝑉𝑇𝑇𝐶 = ∑
𝜕𝑃𝑉𝑇𝑇𝐶

𝜕𝑐𝑡

∞

𝑡=1

𝑑𝑐𝑡  
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Substituting in the relationship in equation A.1.1, 
𝜕𝑃𝑉𝑇𝑇𝐶

𝜕𝑐𝑡
= −



(1+𝑟)𝑡 

𝑑𝑃𝑉𝑇𝑇𝐶 = −𝜆 ∑
𝑑𝑐𝑡

(1 + 𝑟)𝑡

∞

𝑡=1

 

A small change in the constraint leads to a series of small changes in dct over time as the additional budget is 
distributed across years to ensure the greatest possible net saving in PVTTC, fulfilling the equation A.1.1 and 
A1.2 conditions. The present value of these small changes equals the change in PVAC, that is,  

∑
𝑑𝑐𝑡

(1 + 𝑟)𝑡

∞

𝑡=1

= 𝑑𝑃𝑉𝐴𝐶 

Hence 

𝑑𝑃𝑉𝑇𝑇𝐶 = −𝜆 𝑑𝑃𝑉𝐴𝐶 

𝜆 = −
𝑑𝑃𝑉𝑇𝑇𝐶

𝑑𝑃𝑉𝐴𝐶
 

A.2 Minimising PVTTC subject to annual budget constraints 

Annual budget constraints are imposed for years 1 to m. Thereafter, spending is unconstrained for years m + 1 
to infinity. 

The problem is Minimise 𝑃𝑉𝑇𝑇𝐶(𝑐1, 𝑐2, … , 𝑐𝑚, 𝑐𝑚+1, … ) subject to 𝑐𝑡 ≤ 𝐵𝑡 for all t = 1 to m 

The Lagrangian is 

𝐿 = 𝑃𝑉𝑇𝑇𝐶(𝑐1, 𝑐2, … , 𝑐𝑚, 𝑐𝑚+1, … ) + ∑𝑡(𝑐𝑡 − 𝐵𝑡)

𝑚

𝑡=1

 

The Kuhn-Tucker conditions for a maximum subject to inequality constraints are 

𝜕𝐿

𝜕𝑐𝑡
=

𝜕𝑃𝑉𝑇𝑇𝐶

𝜕𝑐𝑡
+ 𝑡 = 0 for all t = 1 to m              (A.2.1) 

𝜕𝐿

𝜕𝑐𝑡
=

𝜕𝑃𝑉𝑇𝑇𝐶

𝜕𝑐𝑡
= 0 for all t = m + 1 to               (A.2.2) 

𝜕𝐿

𝜕𝜆𝑡
= 𝑐𝑡 − 𝐵𝑡 ≤ 0 for all t = 1 to m 

𝑡(𝑐𝑡 − 𝐵𝑡) = 0 for all t = 1 to m               (A.2.3) 

𝑡 ≥ 0 for all t = 1 to m 

The condition in equation A.2.3 allows for constraints to be non-binding for some or all constrained years. If, 
for a given year, the optimal solution does not exhaust all the available budget, then 𝑡 = 0 and 𝑐𝑡 − 𝐵𝑡 < 0. 
Otherwise, where the constraint is binding, 𝑡 > 0 and 𝑐𝑡 − 𝐵𝑡 = 0. 

From equation A.2.1, 𝑡 = −
𝜕𝑃𝑉𝑇𝑇𝐶

𝜕𝑐𝑡
, which implies that the value of lambda for a given year is the saving in 

PVTTC from a one dollar increase the budget for the year with spending in all other years held constant. 

However, from the envelope theorem, 𝑡 = −
𝑑𝑃𝑉𝑇𝑇𝐶

𝑑𝑐𝑡
 at the optimum, that is, the value of lambda for a given 

year is the saving in PVTTC from a one dollar increase the budget for the year, after making all consequential 
optimal adjustments to spending in all other years (Cornes 1992). 

To show why this is the case, say the budget constraint for a single year, i, is relaxed by one dollar. This leads 
to changes in spending for other years, so the total change in PVTTC is: 
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𝑑𝑃𝑉𝑇𝑇𝐶

𝑑𝑐𝑖
= ∑

𝜕𝑃𝑉𝑇𝑇𝐶

𝜕𝑐𝑡

𝑑𝑐𝑡

𝑑𝑐𝑖

∞

𝑡=1

 (A.2.4) 

The one-dollar budget increase in year i will not alter the budgets for the other years with binding constraints, 
hence, dct = 0 for those years. However, there will be changes in spending for the years up to and including 
year m with non-binding constraints, and also for years after year m when there are no constraints. The years 
summed in equation A.2.4 fall into four groups. 

• 𝑡 ≤ 𝑚 and 𝑡 = 0 (non-binding constraint) for which 
𝜕𝑃𝑉𝑇𝑇𝐶

𝜕𝑐𝑡
= 0 from equation A.2.1 

• 𝑡 > 𝑚 (unconstrained) for which 
𝜕𝑃𝑉𝑇𝑇𝐶

𝜕𝑐𝑡
= 0 from equation A.2.2 

• 𝑡 ≤ 𝑚, 𝑡 > 0 and 𝑡 ≠ 𝑖 (binding constraint) for which 𝑑𝑐𝑡 = 0, and 

• 𝑡 ≤ 𝑚, 𝑡 > 0 and 𝑡 = 𝑖 (binding constraint) for which 
𝑑𝑐𝑡

𝑑𝑐𝑖
= 1. 

Hence, at the constrained optimum, all the terms in equation A.2.4 are zero except that for year i, for which 
𝑑𝑐𝑡

𝑑𝑐𝑖
= 1, and 

𝑖 = −
𝜕𝑃𝑉𝑇𝑇𝐶

𝜕𝑐𝑖
= −

𝑑𝑃𝑉𝑇𝑇𝐶

𝑑𝑐𝑖
 

A.3 Minimising PVAC subject to maximum roughness and annual 
budget constraints 

The maximum roughness constraint is assumed to be binding. The optimisation problem and Kuhn-Tucker 
conditions are as follows. 

Minimise 𝑃𝑉𝐴𝐶(𝑐1, 𝑐2, … , 𝑐𝑚, 𝑐𝑚+1, … ) subject to 𝑅(𝑐1, 𝑐2, … , 𝑐𝑚, 𝑐𝑚+1, … ) = 𝑅𝑚𝑎𝑥, and 𝑐𝑡 ≤ 𝐵𝑡 for all 
t = 1 to m 

The Lagrangian is 

𝐿 = ∑
𝑐𝑡

(1 + 𝑟)𝑡

∞

𝑡=1

+ 𝜇[𝑅(𝑐1, 𝑐2, … , 𝑐𝑚, 𝑐𝑚+1, … ) − 𝑅𝑚𝑎𝑥] + ∑𝑡(𝑐𝑡 − 𝐵𝑡)

𝑚

𝑡=1

 

where  is the Lagrange multiplier for the roughness constraint. The conditions for a constrained 
maximum are 

𝜕𝐿

𝜕𝑐𝑡
=

1

(1+𝑟)𝑡 + 𝜇
𝜕𝑅

𝜕𝑐𝑡
+ 𝑡 = 0 for all t = 1 to m            (A.3.1) 

𝜕𝐿

𝜕𝑐𝑡
=

1

(1+𝑟)𝑡 + 𝜇
𝜕𝑅

𝜕𝑐𝑡
= 0 for all t = m + 1 to             (A.3.2) 

𝜕𝐿

𝜕𝜇
= 𝑅(𝑐1, 𝑐2, … , 𝑐𝑚, 𝑐𝑚+1, … ) − 𝑅𝑚𝑎𝑥 = 0             (A.3.3) 

𝜕𝐿

𝜕𝜆𝑡
= 𝑐𝑡 − 𝐵𝑡 ≤ 0 for all t = 1 to m 

𝑡(𝑐𝑡 − 𝐵𝑡) = 0 for all t = 1 to m 

𝑡 ≥ 0 for all t = 1 to m 

𝜇 > 0  

Equation A.3.2 is multiplied through by dct, and all instances summed to obtain 
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∑
𝑑𝑐𝑡

(1 + 𝑟)𝑡

∞

𝑡=𝑚+1

+ 𝜇 ∑
𝜕𝑅

𝜕𝑐𝑡
𝑑𝑐𝑡

∞

𝑡=𝑚+1

= 0 (A.3.4) 

All instances of equation A.3.1 for which the budget constraint is non-binding, hence λt = 0, can be treated in 
the same way to obtain a similar expression. Let N be the set of years t < m with non-binding budget 
constraints. 

 
∑

𝑑𝑐𝑡

(1 + 𝑟)𝑡

𝑡∈𝑁

+ 𝜇 ∑
𝜕𝑅

𝜕𝑐𝑡
𝑑𝑐𝑡

𝑡∈𝑁

= 0 (A.3.5) 

Summing equations A.3.4 and A.3.5 and rearranging 

 

𝜇 = −
∑

𝑑𝑐𝑡

(1 + 𝑟)𝑡𝑡∈𝑁 + ∑
𝑑𝑐𝑡

(1 + 𝑟)𝑡
∞
𝑡=𝑚+1

∑
𝜕𝑅
𝜕𝑐𝑡

𝑑𝑐𝑡𝑡∈𝑁 + ∑
𝜕𝑅
𝜕𝑐𝑡

∞
𝑡=𝑚+1 𝑑𝑐𝑡

 (A.3.6) 

Substituting equation A.3.6 into the instance of equation A.3.1 for which t = i, and multiplying it by dci,  

 

𝑑𝑐𝑖

(1 + 𝑟)𝑖
− [

∑
𝑑𝑐𝑡

(1 + 𝑟)𝑡𝑡∈𝑁 + ∑
𝑑𝑐𝑡

(1 + 𝑟)𝑡
∞
𝑡=𝑚+1

∑
𝜕𝑅
𝜕𝑐𝑡

𝑑𝑐𝑡𝑡∈𝑁 + ∑
𝜕𝑅
𝜕𝑐𝑡

∞
𝑡=𝑚+1 𝑑𝑐𝑡

]
𝜕𝑅

𝜕𝑐𝑖
𝑑𝑐𝑖 + 𝑖𝑑𝑐𝑖 = 0 (A.3.7) 

Along the maximum roughness frontier where equation A.3.3 holds, 

𝑑𝑅 = ∑
𝜕𝑅

𝜕𝑐𝑡
𝑑𝑐𝑡

∞

𝑡=1

= 0 

This can be split into two parts 

 

𝑑𝑅 = ∑
𝜕𝑅

𝜕𝑐𝑡
𝑑𝑐𝑡 +

𝑚

𝑡=1

∑
𝜕𝑅

𝜕𝑐𝑡
𝑑𝑐𝑡

∞

𝑡=𝑚+1

= 0 (A.3.8) 

For years t < m with binding budget constraints, a small change in the constraint for year i will have no effect 
on spending other than for year i itself, so dct = 0. Spending will only change for years t < m with non-binding 
constraints, that is, for the years t ϵ N. and for year i itself. So equation A.3.8 can be rewritten as  

𝑑𝑅 =
𝜕𝑅

𝜕𝑐𝑖
𝑑𝑐𝑖 + ∑

𝜕𝑅

𝜕𝑐𝑡
𝑑𝑐𝑡

𝑡∈𝑁

+ ∑
𝜕𝑅

𝜕𝑐𝑡
𝑑𝑐𝑡

∞

𝑡=𝑚+1

= 0 

which gives 

 

−
𝜕𝑅

𝜕𝑐𝑖
𝑑𝑐𝑖 = ∑

𝜕𝑅

𝜕𝑐𝑡
𝑑𝑐𝑡

𝑡∈𝑁

+ ∑
𝜕𝑅

𝜕𝑐𝑡
𝑑𝑐𝑡

∞

𝑡=𝑚+1

 (A.3.9) 

Substituting equation A.3.9 into equation A.3.7 causes a cancellation of terms in equation A.3.7 leaving 

𝑑𝑐𝑖

(1 + 𝑟)𝑖
+ ∑

𝑑𝑐𝑡

(1 + 𝑟)𝑡

𝑡∈𝑁

+ ∑
𝑑𝑐𝑡

(1 + 𝑟)𝑡

∞

𝑡=𝑚+1

+ 𝑖𝑑𝑐𝑖 = 0 

which can be rewritten as 

𝑑𝑃𝑉𝐴𝐶 + 𝑖𝑑𝑐𝑖 = 0 

𝑖 = −
𝑑𝑃𝑉𝐴𝐶

𝑑𝑐𝑖
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Appendix B – Computer methods for selected parts of 
the BITRE road maintenance model 
This appendix is to assist people wishing to develop maintenance optimisation models similar to the one 
developed for this report. It explains and provides computer code for enumerating all possible treatment 
options subject to a minimum time interval between treatments and testing for dominated options. It also 
addresses strategies and methods to reduce computer run times. 

Explanations of Mathematica commands in the code shown are available from Wolfram Language and System 
Documentation: https://reference.wolfram.com/language/ref/menuitem/DocumentationCenter.html 

B.1 Setting up treatment options 

This section sets out the computer code for deriving treatment timing and type combinations for an analysis 
period of 40 years and minimum time interval between treatments of eight years.  

The code finds all the 7837 possible combinations of treatment timings and with up to five combinations of 
three treatment types (35 = 243) starting from {1, 9, 17, 25, 33} (five treatments; the first in year one with 
eight years between them) to { } (no treatments at all over the 40 years). The number of possible 
combinations of treatment types is less than 243 where there are fewer than five treatments. For example, 
with two treatments, say in years 7 and 23, there a 32 = 9 possible combinations of treatment types. 

If the two key parameters, a 40-year analysis period and 8-year minimum time interval between treatments, 
are altered, changes must be made to the programming to accommodate a different value for the maximum 
number of treatments that can be carried out during the analysis period. For example, reducing the analysis 
period to 30 years while retaining the 8-year minimum treatment time interval, reduces the maximum 
number of treatments from five to four. 

Two methods are shown. The first is Visual Basic code for an Excel macro using nested loops. The second is 
Mathematica code using functional programming. 

B.1.1 Visual Basic code — nested loops 

In the Visual Basic Macro using nested loops, the list of five treatment years is filled from left to right. For each 
value, y, in the list in positions 1 to 4, the next value on the right (positions 2 to 5) is iterated from y + 8 to 41. 
When the value in a position reaches 41, the loop is exited. 

The code creates two arrays 

• iTrmtYears: An array of five integer values for the years which up to five treatments occur eg. {1, 9, 17, 25, 
33}. For timing combinations with less than five treatments, the blanks are filled with 41 eg. {3, 21, 41, 41, 
41} means treatments in years 3 and 21 only. 

• iTypes: An array of five integer values for the types of treatments: 1 = resurface; 2 = resurface with shape 
correction; 3 = rehabilitation, for example {1, 1, 2, 3, 1}. For timing combinations with less than five 
treatments, the blanks are filled with 1s, for example {1, 3, 1, 1, 1} where only two treatments are carried 
out during the analysis period. 

Dim iTrmtYears(1 To 5) As Integer 

Dim iTypes(1 To 5) As Integer 

Dim iPeriod As Integer 'The length of the analysis period plus one 

Dim iMinterval As Integer 'The minimum number of years between treatments 

Sub TreatmentTimes() 

iPeriod = 41 

iMinterval = 8 
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iTrmtYears(1) = 1 'The first element of the treatment times array is set 

to one. 

Do Until iTrmtYears(1) > iPeriod 

iTrmtYears(2) = Application.Min(iTrmtYears(1) + iMinterval, iPeriod) 

Do Until iTrmtYears(2) > iPeriod 

iTrmtYears(3) = Application.Min(iTrmtYears(2) + iMinterval, iPeriod) 

Do Until iTrmtYears(3) > iPeriod 

iTrmtYears(4) = Application.Min(iTrmtYears(3) + iMinterval, 

iPeriod) 

Do Until iTrmtYears(4) > iPeriod 

iTrmtYears(5) = Application.Min(iTrmtYears(4) + iMinterval, 

iPeriod) 

Do Until iTrmtYears(5) > iPeriod 

Range("Treatment_description").Range(Cells(1, 1),  

Cells(1, 5)).Value = iTrmtYears 'enters the array of five 

treatment times into the spreadsheet starting in the cell 

given the range name “Treatment_description” 

TreatmentTypes 'calls the sub-routine below 

iTrmtYears(5) = iTrmtYears(5) + 1 

Loop 'Visual Basic command to end a Do loop 

iTrmtYears(4) = iTrmtYears(4) + 1 

Loop 

iTrmtYears(3) = iTrmtYears(3) + 1 

Loop 

iTrmtYears(2) = iTrmtYears(2) + 1 

Loop 

iTrmtYears(1) = iTrmtYears(1) + 1 

Loop 

End Sub 

The following sub-routine works through all possible combinations of three treatment types for the number 
of treatment years. If the number of treatments during the analysis period is n, there will be 3n combinations 
of treatment types, ranging from 3 for one treatment to 243 for five treatments. Treatment types are 
assessed in descending order from the most expensive treatment, rehabilitation (code 3), to the least 
expensive, resurface (code 1). The reason for going in descending order is that if a treatment time–type 
combination consisting of all rehabilitations is rejected on the grounds it does not meet the technical 
restrictions (for example, the maximum permitted roughness), then it will be impossible for any treatment 
type combinations in which rehabilitations are replaced with less expensive treatments in the same years to 
satisfy the technical restrictions. Processing time is saved by not assessing any further treatment type 
combinations in those years with less expensive treatments (codes 1 or 2). 

Sub TreatmentTypes() 

iTypes(1)= SetType(1) 'See below for the SetType function. 

While iTypes(1) > 0 

iTypes(2)= SetType(2) 

While iTypes(2) > 0 

iTypes(3)= SetType(3) 

While iTypes(3) > 0 

iTypes(4)= SetType(4) 



 

129 
 

While iTypes(4) > 0 

iTypes(5)= SetType(5) 

While iTypes(5) > 0 

Range("Treatment_description").Range(Cells(1,6), 

Cells(1,10)).Value = iTypes 'enters the list of five 

treatment types into the spreadsheet immediately to the right 

of the list of five treatment times 

Calculate 'Runs the spreadsheet model to project pavement 

condition forward and estimate road agency and user costs. 

Note that the ‘Calculate’ command is required when automatic 

calculation has been switched off to reduce unnecessary 

processing. Further code at this point of the program, not 

shown here, records the model results that have to be 

retained, storing them elsewhere in the spreadsheet. 

iTypes(5)= iTypes(5)-1 

Wend 'Visual Basic command to end a While loop 

iTypes(4)= iTypes(4)-1 

Wend 

iTypes(3)= iTypes(3)-1 

Wend 

iTypes(2)= iTypes(2)-1 

Wend 

iTypes(1)= iTypes(1)-1 

Wend 

End Sub 

 

Function SetType(i) 'If the treatment year for a given position in 

iTrmtYear is 41, it is a blank and a 1 is entered for the treatment type 

in the same position in iType. 

If iTrmtYears(i) = iPeriod Then 

SetType = 1 

Else 

SetType = 3 

EndIf 

End Function 

B.1.2 Mathematica code — functional programming 

In the Mathematica code shown below, key words are coloured dark blue and user-defined functions dark 
teal. The symbol ‘/@’ (short for the Mathematica command ‘Map’) creates a list of outputs from the function 
on the left of the symbol with each member of the list to the right inputted to the function. Functions used 
only once can be defined as ‘pure functions’ with input variables to a function represented by ‘#’ or ‘#1’, ‘#2’ 
etc. with ‘&’ at the end of the function separating it from the inputs. For example, #^2 &[3] gives 9 and (#1 + 
#2) &[3, 4] gives 7. 

The Mathematica code to derive the treatment time and type combinations consists of just three statements. 

fNextTrmtYears[y_]:= 

Select[Join[Most[y],Last[y]+Range[1,40,8]],LessThan[41]]; 
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YearsList = 

NestWhileList[fNextTrmtYears,Range[1,40,8],!EqualTo[#][{40}]&]; 

 

TrmtTypeCombos = Tuples[{3,2,1},#]&/@Range[5]; 

The first two lines of code produce a list of 7836 lists of treatment year combinations as follows: YearsList = 
{{1, 9, 17, 25, 33}, {1, 9, 17, 25, 34}, {1, 9, 17, 25, 35}, …, {1, 9, 17, 25, 40}, {1, 9, 17, 25}, …, {32, 39}, {32, 40}, 
{32}, {33}, {34}, {35}, {36}, {37}, {38}, {39}, {40}}. 

Unlike the Visual Basic program, blanks are not required where the number of treatments is less than five. 
The code needs only to be run once at the start of the program and held in memory to reuse for each 
segment processed. The null treatment option, { }, was omitted because leaving the pavement untreated for 
40 years invariably violates the technical restrictions. For short analysis periods, for example 20 years, it was 
necessary to include the null treatment option. 

The first statement declares the function fNextTrmtYears[y_] and second statement applies the function 
recursively. NestWhileList[f, expression, test] generates a list of the results of applying the function f 
repeatedly, starting with the expression, and continuing until the test no longer yields the result ‘True’. 

The second statement sets the first element in YearsList to Range[1, 40, 8] = {1, 9, 17, 25, 33}. Then it expands 
the list by applying the function fNextTrmtYears to the last element in the list to obtain the next element. It 
keeps doing this while the last element is not equal to {40}. The process is halted just before the null 
combination is reached. To include the null element in YearsList, the expression !EqualTo[#][{40}]& 

must be replaced with !EqualTo[#][{}]&. 

The function fNextTrmtYears[y_], when applied to a list of treatment years, say the third element in YearsList, 
y = {1, 9, 17, 25, 35} 

• adds the last element (Last[y]), 35, to Range[1, 40, 8] = {1, 9, 17, 25, 33} to obtain {36, 42, 50, 58, 66} 

• joins it to y, after dropping the last element of y (Most[y]), to obtain {1, 9, 17, 25, 34, 42, 50, 58, 66} 

• then selects all values less than 41 to obtain the next member of YearsList, {1, 9, 17, 25, 34}. 

Applying fNextTrmtYears to the list y = {7, 20, 40} transforms it thus 

• Last[y]+Range[1,40,8]] = 40 + {1, 9, 17, 25, 33} = {41, 49, 57, 65, 73} 

• Join[Most[y], previous result] = Join[{7, 20}, {41, 49, 57, 65, 73}] = {7, 20, 41, 49, 57, 65, 73} 

• Select[previous result, LessThan[41]] = Select[{7, 20, 41, 49, 57, 65, 73}, LessThan[41]] = {7, 20} 

The combinations in YearsList are in the same order as produced by the Visual Basic code above. 

The third statement in the code sets up a list of five lists, TrmtTypeCombos, each containing all possible 
combinations of the elements {3, 2, 1}. For one treatment, the combinations are {{3}, {2}, {1}}. For two 
treatments, the combinations are {{3, 3}, {3, 2}, {3, 1}, {2, 3}, {2, 2}, {2, 1}, {1, 3}, {1, 2}, {1, 1}}, and so on up to 
five treatment types. This is done by applying Mathematica’s ‘Tuples’ function to the elements {3,2,1} to 
obtain the combinations for each length from 1 to 5, that is, over Range[5] = {1, 2, 3, 4, 5}. 

For each combination of treatment times, the maintenance implications are assessed for each possible 
combination of treatment types. For example, for the treatment time combination {4, 19, 36}, all 33 = 27 type 
combinations of three would be assessed. As with the Visual Basic code, the treatment types are written out 
in descending order so that, if the combination with all rehabilitations fails to meet the technical restrictions, 
‘throw’ and ‘catch’ functions can be employed to exit the function to avoid unnecessary testing for 
combinations with less effective treatment types. 

B.2 Testing for dominated options 

This section discusses stage 2 of the optimisation process for annual budget constraints in Chapter 6 in which 
the list of up to 581,485 options for a segment was reduced by eliminating ‘dominated’ options, defined as 
options that could never appear in any constrained optimum solution. 
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The process whereby the list of non-dominated options is developed from the list of all options that are 
technically feasible produced in stage 1 was described in Section 6.3. In brief, the non-dominated options list 
starts with the first member of in the list of all options as the seed. The non-dominated options list is revised 
and expanded by taking each option in turn from the all-options list, starting from the second option, — call it 
option A — and comparing it with each option in the non-dominated list, option B. If option A is found to 
dominate any option in the non-dominated list, the latter is removed. If option A is not dominated by any 
option in the non-dominated list, it is added to the list. The process continues until the end of the all-options 
list is reached. 

In the computer model, the dominance test applied was, with budget constraints for the first n years, option A 
dominates option B if, 

𝑚𝑖𝑛[(𝑃𝑉𝑇𝑇𝐶𝐵 − 𝑃𝑉𝑇𝑇𝐶𝐴), (𝑐1
𝐵 − 𝑐1

𝐴), (𝑐2
𝐵 − 𝑐2

𝐴), ⋯ , (𝑐𝑛
𝐵 − 𝑐𝑛

𝐴)] ≥ 0  

No two options will be identical so all n + 1 elements in the expression will never equal zero. If option A has a 
lower PVTTC value than option B, then 𝑃𝑉𝑇𝑇𝐶𝐵 − 𝑃𝑉𝑇𝑇𝐶𝐴 > 0. For A to dominate B, there is a further 
requirement that agency spending in each budget constrained year under option A, not be lower than under 

option B. If spending under option B in, say, year 5 was lower than under option A, then 𝑐5
𝐵 − 𝑐5

𝐴 < 0, the 
above test expression would be negative and the test would fail. It would be concluded that option A does not 
dominate option B. In the unlikely event that the PVTTC values were equal, option A would dominate option B 
if no years had lower spending under option B than under option A, which implies that option A was less 
costly in at least one year. 

In the case of the simple numerical example in Table 6.1, the left-hand expression of the dominance test 
would give zero values for segments 1, 2, 3 where option A dominates, and –140,000 for segment 4 where 
neither option dominates. 

Having tested whether option A dominates option B, it is then necessary to apply the reverse test to 
determine whether option B dominates option A.  

𝑚𝑖𝑛[(𝑃𝑉𝑇𝑇𝐶𝐴 − 𝑃𝑉𝑇𝑇𝐶𝐵), (𝑐1
𝐴 − 𝑐1

𝐵), (𝑐2
𝐴 − 𝑐2

𝐵), ⋯ , (𝑐𝑛
𝐴 − 𝑐𝑛

𝐵)] ≥ 0 

In the case of the simple numerical example in Table 6.1, the left-hand expression of the reverse test would 
give negative values for all four segments. 

If both tests fail, then neither option can be eliminated from further consideration by the model. Both have to 
be included in the non-dominated list. Either one could be subsequently removed if found to be dominated in 
a subsequent test. 

The process of building up the non-dominated list was undertaken using Mathematica’s Fold command, 
Fold[f, {a, b, c, d}] = f[ f[ f[a, b], c], d]. 

NonDominatedList = Fold[function to compare options and build non-

dominated list, {First[full list of options]}, Rest[full list of options]] 

The ‘function to compare options and build non-dominated list’ returned the non-dominated list, modified by 
adding the option from the full options list if dominant with dominated options deleted or not comparable, or 
unchanged if the option from the full options list was dominated by any options in the non-dominated list. 

B.3 Ways to reduce computer run times 

Ways to reduce processing time by the model included 

• Calculating the lists of treatment time and type options and the list of discount factors at the 
commencement of the program, then retaining them in memory for the whole model run. 

• For each segment, making projections of vehicle numbers and calculating constants that depend on 
segment data before commencing to evaluate treatment options for the segment, then retaining the 
projections and constants in memory until all options for the segment had been evaluated. 
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• Projecting cracking over the analysis period only once for each set of treatment times. Since all three 
treatment types reset surface age to zero, the projected cracking is identical regardless of treatment 
types. 

• Using ‘throw’ and ‘catch’ functions to immediately cease processing an option when it was found to 
violate a technical constraint. Such cases occurred mostly for options with long intervals of time without 
treatment during which pavement condition deteriorated severely. 

• Where a segment violated a technical constraint at the start of the analysis period, such as having a 
roughness above 6.3 m/km IRI, a treatment was mandatory in year one. There was no need to assess 
options that do not have a treatment in year one. 

• For each list of treatment times, the first list of treatment types to be evaluated was all rehabilitation 
treatments . If this violated a technical constraint, it was not necessary to evaluate further combinations 
of treatment types with less effective treatments because they would inevitably violate the technical 
constraints as well. 

• The no-treatments option {{ },{ }} was not evaluated because it was not technically feasible for a 40-year 
analysis period. A pavement neglected for that that length time would exceed the maximum allowable 
roughness level within that period. The no-treatments option had to be reinstated for sensitivity tests 
involving shorter analysis periods. 
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Appendix C – Depreciation calculation 
Depreciation was added to agency costs at the end of the last year of the analysis period with the aim of 
approximating the PVTTC from the end of the analysis period to infinity. 

Ideally, the model would be invariant to implementing a treatment at the end of year 40 and not 
implementing it because the depreciation value changes by an offsetting amount. This was achieved 
approximately for two of the three treatment types. The maximum depreciation amount was set at the 
rehabilitation cost with the design pavement strength for year 40 and a roughness of 5.2 m/km IRI. Part of this 
amount, the cost of resurfacing with cracking at 0.5% (the level just prior to crack initiation) was depreciated 
linearly with surface age over the years to crack initiation (that is, 12 years for sprayed treatment pavements 
and 16 years for asphalt mix pavements). Thus, for a pavement just starting to crack in year 40, agency costs 
were the same whether or not the model resurfaced in year 40. The remainder of the maximum depreciation 
amount was apportioned linearly according to roughness between the range 1.2 and 5.2 m/km IRI. Pavement 
age was not used because of the difficulty in predicting the number of years for a new pavement to reach 
5.2 m/km IRI. 

It was found that this method of calculating depreciation caused a large number of pavements to be given 
resurfacing with shape correction treatments in the last few years of the analysis period. The reason was that 
this intermediate treatment, not taken into account in the depreciation schedule, caused a significant saving 
in depreciation making the treatment too attractive. Typically, the resurfacing with shape correction 
treatment would be undertaken around a roughness of 3.5 m/km IRI and would reduce roughness by around 
one IRI unit. A section with a flatter slope was introduced into the depreciation curve over the range 2.5 to 
3.5m/km IRI, compensated for by steeper slopes outside the range. The depreciation function is shown in 
Figure C.1, and the formulas in Table C.1. Depreciation is shown as a function of roughness for a hypothetical 
one kilometre of road with a sprayed treatment pavement type and design adjusted structural number of 
6.93. The depreciation shown is only the component that varies with roughness. The maximum depreciation 
that varies with roughness ($189,500) is the cost of a rehabilitation at a roughness of 5.2 m/km IRI ($194,200) 
minus the cost of a resurface ($4,700) with 0.5% cracking. The middle section between 2.5 and 3.5 IRI has the 
same value as the straight line at the mid-point 3.0 IRI and a slope equal to the cost per IRI unit of roughness 
improvement from the resurface with shape correction treatment at 0.5% cracking ($26,700) minus the cost 
of the resurfacing only treatment. 

The example here shows that the difficulty in specifying a depreciation schedule that well approximates 
PVTTC for years beyond the end of the analysis period increases with the number of possible treatment types. 
Depreciation schedules for maintenance optimisation models may be a worthwhile area of future research. 
However, if the analysis period extends well beyond the focus period (in our model, a 20-year focus period 
with a 40-years analysis period), the highly-approximate nature of the depreciation calculation will have only 
a limited effect on recommended treatments during the focus period. The sensitivity tests reported in 
Chapter 5 showed how results can be distorted by having a short analysis period shifting greater reliance onto 
the depreciation function to simulate PVTTC beyond the analysis period. 
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Figure C.1 Depreciation as a function of roughness 

 

Table C.1 Depreciation formulas 

Roughness range (m/km IRI) Depreciation formula 

0 – 1.2 0 

1.2 — 2.5 (1.8 A – 2 B) (R – 1.2) / 5.5 

2.5 — 3.5 0.45 A + (R – 3) B 

3.5 – 5.2 ((10.4 – 2 R) B – (4.64 – 2.2 R) A) / 6.8 

5.2 and above A 

where 

• R = roughness at the end of the analysis period 

• A = the additional cost of a rehabilitation (treatment 3) at IRI = 5.2, over and above the cost of a 
resurfacing (treatment 1) with cracking at 0.5% ($189,545 = $194,195 – $4,650 in Figure C.1) 

• B = the additional cost of resurfacing with shape correction (treatment 2), over and above the cost of 
resurfacing, both at cracking of 0.5% ($22,000 = $26,650 – $4,650 in Figure C.1)  
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Appendix D – ARRB modelling of case study data 
ARRB’s modelling results for the case study database using HDM-4 are presented here and compared with the 
BITRE model results to illustrate an alternative modelling approach. ARRB dealt with the ‘curse of 
dimensionality’ in three ways. First they aggregated the 2034 road segments into 573 ‘strategic analysis 
sections’ to enable the analysis to fit within the limits of HDM-4. Second, they employed the method 
discussed in Chapter 4 of having the model choose between condition-responsive treatment rules instead of 
times at which particular treatments are implemented. Third, the analysis period was set at 20 years, with a 
residual value applied at the end of the period. 

Five ‘treatment alternatives’ were specified. Each alternative consisted of a one or more treatment types with 
condition-based trigger points at which the treatment was implemented. The periodic treatment types were 
resurfacing, resurfacing with shape correction and rehabilitation. All five alternatives included routine 
maintenance in the form of patching wide structural cracks and potholes, and edge repair. The treatment 
alternatives were 

• Base alternative (minimum standard): resurface at a target age of 10 years for surface treatment 
pavements, 15 years for asphalt mix pavements 

• Standard maintenance: base alternative with resurfacing with shape correction at 3.5 m/km IRI 

• Delayed resurfacing: standard maintenance with resurfacing delayed to 1.5 times target age 

• Rehabilitation on high distress: base alternative with rehabilitation at >10% cracking and >10mm mean rut 
depth 

• Standard Maintenance with rehabilitation at high distress: base alternative with rehabilitation at 
5.4 m/km IRI. 

Treatment timing options were tested by allowing commencement of options other than the base alternative 
to be delayed by varying numbers of years. Each of the four options other than the base alternative could be 
commenced in any of years 1 to 11 giving rise to 45 options (four alternatives × 11 years and the base 
alternative) for each segment.  

The residual value was calculated as having two components. 

• A pavement component set at 90% of the cost of the latest pavement rehabilitation treatment 
depreciated linearly with roughness between 1.2 and 5.2 m/km IRI, and 

• A surfacing component set at the greater of 10% of the cost of the latest pavement rehabilitation 
treatment and the full cost of the latest surfacing where a surfacing was applied as a separate treatment, 
depreciated linearly over a life defined as the lesser of the resurfacing target age or time in years until 
cracking reaches 10%. 

HDM-4 projected pavement condition and user costs forward and estimated the net benefits for each 
alternative for each commencement time compared with the base alternative. The unconstrained optimum 
for each segment was the option with the lowest of PVTTC out of the 45 possibilities. 

Table D.1 summarises the results in terms of percentages of the network (by length) treated, spending for the 
three periodic treatment types, and in total spending. ARRB also forecast needs for ‘other’ routine 
maintenance treatment types (pothole patching, edge repair and crack sealing), but these have not been 
included in Table D.1 to facilitate comparison with the BITRE model results in identically-formatted Table 5.4. 
Spending on ‘other treatments’ was small in relation to the total except in year one when it was $21 million. 
Over the 20 years, spending on other treatments added up to $41 million, increasing total spending by 4%. 
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Table D.1 Summary of ARRB modelling results: unconstrained optimisation 

Years Percent of network kilometres treated Spending ($ millions) 

 Resurf. RSC Rehab. Total Resurf. RSC Rehab. Total 

Totals 

1 35 0 1 36 91 3 8 102 

1 to 10 83 1 28 113 196 9 396 601 

11 to 20 60 10 8 77 146 66 125 337 

1 to 20 143 11 36 190 342 75 521 937 

Annual averages 

1 to 10 8 0 3 11 20 1 40 60 

11 to 20 6 1 1 8 15 7 12 34 

1 to 20 7 1 2 10 17 4 26 47 

Notes: Percentages of network kilometres treated in excess of 100% occur where the same road segments are treated more than 
once over the time period. 
Resurf. = resurface, RSC = resurface with shape correction, Rehab. = rehabilitation 

First-year optimal spending was $102 million with 36% of the network by length treated. Most of this was 
resurfacing — 97% by length and 89% by spending. The split of costs between treatment types for the 
20 years was 36% for resurfacing, 8% resurfacing with shape correction and 56% rehabilitation. ‘Rehabilitation 
on high distress’ was the optimum alternative for 1,503 kilometres of the network, followed by standard 
maintenance for 253 kilometres. A total of 713 kilometres or 36% of the network by length was rehabilitated 
during the 20-year period. Annual average optimal spending over the 20 years was $47 million, with 10% of 
the network, on average, treated each year. Maintenance activity was more intense during the first 10 years 
than the second. 

Optimisation subject to annual budget constraints was undertaken using the ‘ARRB Optimisation Tool’, 
supported by genetic optimisation software ‘Evolver’. It was intended to impose annual budget constraints for 
the first 10 years of 100%, 75%, 50% and 25% of the average year-one to year-10 annual agency costs 
(including ‘other treatments’ not shown in Table D.1) of $63.2 million. However, the annual spending levels 
for the base alternative set the lower limits on annual budget constraints. For the last budget-constrained 
years, with base alternative spending exceeding $80 million per annum, it was impossible to meet the annual 
budget constraints, even at the 100% level. 

Comparing the ARRB and BITRE results in Tables D.1 and 5.5, over the 20 years, the proportion of the network 
treated (184% for BITRE and 190% for ARRB) and proportions rehabilitated (37% for BITRE and 36% for ARRB) 
were remarkably similar. BITRE’s model recommended more resurfacing with shape correction and less 
resurfacing. BITRE’s model had 60% higher total spending for the 20 years. The main reason was that the 
average cost of a rehabilitation treatment was $118 per square metre for the BITRE model compared with $67 
for the ARRB model (based on ARRB advice to BITRE received some time after ARRB had completed its 
modelling). 

Figures D.1 and D.2 show annual spending and kilometres treated as forecast by the two models. The left bars 
are the same as in Figures 5.2 and 5.3. The BITRE model had more work done in year one than the ARRB 
model, 54% compared with 36% of kilometres treated, with the ARRB model pushing resurfacing work into 
years 2, 3 and 4. This could be a reflection of how the ARRB model considered delaying the commencement of 
policy options. The BITRE model had rehabilitation work peaking on year five and the ARRB model in years 10 
and 17.  



 

137 
 

Figure D.1 Forecast optimal expenditure without budget constraints: BITRE and ARRB models 

  
Notes: For each year, the left bar is the estimate from the BITRE model and right bar from the ARRB model. 

Rehab. = rehabilitation, RSC = resurface with shape correction, Resurf. = resurface 

Figure D.2 Forecast road lengths treated without budget constraints: BITRE and ARRB models 

 
Note: For each year, the left bar is the estimate from the BITRE model and right bar from the ARRB model. 

Rehab. = rehabilitation, RSC = resurface with shape correction, Resurf. = resurface 
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Figure D.3 shows length-weighted average roughness projected over the 20-year period. The BITRE line is the 
same as for PVTTC minimisation in Figure 5.8. Both models brought average roughness down in the middle 
part of the period after the backlog of the network in poor condition was addressed. The ARRB model 
undertook large amounts of rehabilitation work in years 8 to 12, as evident in Figures D1 and D.2, while the 
BITRE model spread maintenance works more evenly across years. A possible reason is that the ARRB model 
had less flexibility to shift treatments between years because it optimised maintenance policies with 
alternative commencement years instead of individual treatments. 

Figure D.3 Length-weighted average roughness: BITRE and ARRB models 

 

Note: Starting the vertical axis at 2.0 instead of zero accentuates the vertical difference between the two curves 
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