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FOREWORD 

This paper has been prepared as part of an investigation  into  the value  of  travel time 
savings. It  follows  on  from  the  work  reported  in  the  Bureau of Transport  Economics 
Occasional Paper 51 which  found  that  little  confidence  could  be  attached  to  the 
currently available values. 
This paper  reviews the  methods available forestimating  thevalue of travel timesavings 
and modelling  traveller  behaviour.  The  assumptions and limitations are compared to 
identify  a  preferred  method.  This  forms  the basis for  Bureau of Transport  Economics 
fieldwork  leading  to  the  estimation  of  the value  of  travel time savings. 
This paper was prepared  by  Dr G.W. King  under  thesupervision of Mr D.R. Scorpecci. 
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SUMMARY 

A decrease in  travel  time is usuallyoneof  the  benefits  resulting  from  improvements  to  a 
transportation system. For cost  benefit analysis of project  proposals  it is necessary to 
estimate the value of  travel time savings. Methodologies  which may  be  used for  this 
purpose are  reviewed in  this  paper  with  the aim  of comparing  the  assumptions  and 
limitations of the  formulations and solution  techniques used. 
The  methodologies are divided  into  aggregate  and  disaggregate  models.  The 
aggregate  models discussed  are the  gravity,  entropy and abstract  mode models.  These 
are limited  by  their  restricted  behavioural basis  and use of data  describing  zonal and 
inter-zonal  characteristics.  Any values produced  by these models are calculated at the 
mean of the sample. 
The  many  disaggregate  models are mostly based upon  theories of individual  decision 
making  behaviour.  This  paper divides the  models  into  simple,  multinomial, general 
behavioural  and  functional measurement models. 
The  simple  disaggregate  models are obtained  by  describing  the  results of travel 
decisions  in terms of choice  functions  that are linear combinations of explanatory 
variables. The  models  considered are the linear probability,  linear  logit,  probit  and 
discriminant analysis  models. 
The  multinomial  logit  model is the  most  commonly used multinomial  formulation.  Its 
linear functional  form  restriction can be relaxed by the use of transformations.  The 
necessity  of obeying  the  independence  from irrelevant  alternatives axiom  can be 
removed  by  the  dogit  model  formulation.  The  multinomial  logit  model can  be modified 
to  describe  more  general  decision  structures  giving rise to  the  conditional,  sequential 
and recursive sequential  models. 
The  multinomial  probit  model is a generalised  alternative  to  the  multinomial  logit 
model. It allows taste variations  between  individuals and covariance between 
alternatives, but  requires  considerable  computation. 
The general behavioural  models use different  theories of decision  making.  The 
elimination-by-aspects  model assumes a search across  attributes  in  order  of 
importance and the  satisficing  model  a search across alternatives. The  priority 
evaluator method is used to identify  the  trade-offs  involved  in  multi-attribute  decision 
making. 

Functional measurement is a technique used to obtain  interval  scaled responses to 
alternative  trips and to  determine  the  functional  form of the  choice  function used. This 
is the  only  approach  which  allows  cross-product  and  power  terms  in  the  function. 

When applying  any  model  thesources of error,  aggregation of disaggregate  results and 
the  updating and transferof  results  should be considered.  This  paperdiscusses  each of 
these issues and the  precautions  which may  be taken. 
The  desirable  properties of models  for  estimating  the value of travel time  savings are 
listed  and used to  compare  the  models reviewed. None of the  models has all  the 
properties, but  functional measurement comes closest.  For situations  in  which 
aggregate  results are acceptable  the  elimination-by-aspects  and  satisficing  models 
should be considered. 

V i ,  



CHAPTER 1-INTRODUCTION 

Among  the  benefits  resulting  from  improvements  to  the  road system is,  usually,  a 
decrease in travel time. BTE (1982) found  that  various  authors  identified these time 
savings as being  between 29 and 80 per  cent of the  total  benefits  arising  from  transport 
investment. 

The  motivation  for  this paper  arose from  the need to  estimate  the value  of  travel time 
savings for use in  cost  benefit analysis of proposed  transport  projects, a: BTE (1982) 
found  considerable  variation  in  the  estimated values in an extensive literature search. 
There are a  large  number  of  potentially  useful  techniques available to  estimate  the 
value of travel time savings, but  no  comparative review of the  assumptions  in each 
methodology is  available. 
The  two  broad  approaches  to  estimating  the value of travel time savings resulting  from 
changes to  transport systems are: 

the value of the  marginal  productivity of working  time;  and 
the values implicitly used in  consumer  decision  making  behaviour. 

The  marginal  productivity  approach  considers  that travel  is not an end purpose  itself, 
but  results  from  the  pursuit of productive  activities.  Therefore  there is an opportunity 
cost associated with travel since  time savings are available for  other  economic 
activities. The  opportunity  cost of time savings is  determined  by  measuring  thevalue of 
any additional  production  resulting  from decreases in  travel  time  during  working 
hours. This measure is only  appropriate  for  time savings  made in  the  employer’s  time, 
and assumes that  the  time savings  are  used to provide  additional  production. This 
requires  the  determination of the uses to  which savings in  travel  time  could  be  put, and 
an estimation of the  economic value  of the  potential  additional  production.  Often it is 
difficult  to  determine if any additional  production  results  from  travel  time savings. 
The  usual  rationale  used  to value additional  production,  and  hencetravel  timesavings, 
is that  people  will  work and employers  will  hire  labour as long as itsvalue  in  production 
is greaterthan its cost.  Therefore, at the  margin,  the average  wage  rate is a measure  of 
the value  of the  additional  production.  This is only  true  in  a  perfect  economy because 
minimum-wage and maximum-hours  legislation,  overtime payments, payroll  tax  etc 
distort  the  appropriateness of the wage rate. Also any  production increases due  to  the 
impact of road  improvements are generally  confounded  with  increasesduetochanges 
in  productivity and technology  in  the  workplace, as well as institutional and 
maintenance changes in  the  road  system. 
Even when  thesedifficulties are overcome,  thevalue of marginal  productivityapproach 
is only  suitable  for  working  hours  valuation of  travel time savings. Time savings have a 
social value  when not  linked  to  production, due to  the release of time  forotheractivities 
which  do  not have a  productive use. 
The  consumer  decision  making  behaviour  approach  is  concerned  with  the values 
individuals  implicitly use when  deciding  between  alternative  trips where they  can 
trade-off  cost,  time,  comfort, privacy,  safety, reliability,  convenience  etc and  is not 
restricted  to  working  hours.  The  time  traded-off may consist of a  number of 
components  with  different values. For example, waiting  time,  walking  time,  in-vehicle 
time and parking  time.  The  cost  includes  not  only  the  direct  operating costs or fares, 
but  could  include  parking costs, tolls and  standing  costs  depending on the  situation 
and attitude of the  individual  making  the  decision.  The  behavioural value of time is the 
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market  value of  time as reflected  by  consumer  behaviour and is inferred  from  models of 
decision  making  behaviour. 
This paper addresses only  the  behavioural value of time because of the  intrinsic 
problems  that exist in  trying  to estimate the value of  marginal  productivity  resulting 
from  time savings, particularly  when  the  time saved does not have a  readily 
recognisable  productive use. Also the  behavioural value of  time  savings  is  not 
restricted  to  working  hours  situations  and  hence is more  generally  applicable. 
This paper  discusses the  commonly available choice  models  and  the  assumptions 
upon  which.  they are based. Consumer  choice  models can be developed  via either 
aggregate  or  disaggregate  formulations.  Aggregate  models use information  which is 
only based on zonal characteristics  and  produce average (over  all  individuals) values of 
travel time savings for  trip  options.  Disaggregate  models are based upon  theories of 
individual  decision  making  behaviour,  but can produce  aggregate  or  disaggregate 
results  depending  on  the  model  and  solution  technique  chosen. 
There are many  disaggregate  models  which can be used. This  paper  divides  the  models 
into  simple,  multinomial, general behavioural  and  functional measurement models. 
These  are discussed  with  particular  emphasis  on  the  assumptions  and  limitationsof  the 
formulation and solution  technique  used. 

Chapter 9 discusses some of the  items  which  should  be  considered  when  using 
disaggregate  models.  The  main  items are sources of error,  the  aggregation of 
disaggregate  results and the  updating  and  transfer of models over space  and  time. 
The issues which  should  be  considered  when  selecting  a  choice  model  for  application 
are discussed  in  Chapter 10. The  choice  models  described  in  this paper are then 
compared  with respect to  their  important  assumptions,  limitationsand  characteristics. 

2 



CHAPTER  2"AGGREGATE  AND  DISAGGREGATE  MODELS 

It is common  to  divide  behavioural  models of travel  decisions  into  aggregate  and 
disaggregate  models.  A  disaggregate  choice  model is 'a  model  which describes 
individual  choice  amongst  a  finite  number of discrete alternatives as a  function of a 
number of variables defined  and measured atthe same individual level' (Ruijgrok 1979). 
The  term  disaggregate is related to  both  the  choice  itself and the measurement  of 
explanatory variables. 
In  constrast,  aggregate  models  describe  the overall behaviour of a  group of people.  The 
explanatory variables usually relate to  the  group  under  consideration  rather  than  the 
individuals. 
Even when disaggregate models are  used, the  final  objective is to provide  reliable 
estimates  of the  behaviour of the  population  being  studied as a  group rather than  a  lot 
of individual  predictions.  The  terms  aggregate and disaggregate are relative, as the 
level of division of a  population  for  a  disaggregate  model depends upon  the degree of 
detail required.  It  will be shown later that  disaggregate  models  do  not necessarily 
provide  disaggregate parameters for  a  function  describing  the  choices of individuals 
but,  due  to  the  solution  techniques used, provide  aggregate  results. 
Some  disaggregate  models  can  be used with  aggregated data making  them aggregate 
models when  used this way. In general this  will give results  different  from  those 
obtained if a  disaggregate  model was used with  the same data  before it was 
aggregated.  This is  because the value  of a parameter in average circumstances  differs 
from  the average value of the parameter over all  circumstances. 
Hence  for  a  model  to  be  useful  in  evaluating  thevalue  oftravel  attributes  to  individuals, 
it  should  model  the  choice  function of the  individual and provide parameter values for 
the  individual.  Then  the value of travel attributes  for each individual surveyed  can be 
estimated  and  the  results  accumulated.  with  appropriate  weights,  to  reflect  the 
population of interest.  Alternatively  it  could  produce  aggregate  results,  but  with 
additional  distribution  information. 
Hensher  and  Hotchkiss (1974) list  the  following as the basic weaknesses of aggregate 
models. 

Transport system characteristics are poorly  handled at the level of aggregation 
used. Such  characteristics can show  wide  variations  within  azone and the use of an 
average figure does not  account for that  variation. 
When  aggregate models are  used to  estimate  elasticities  and  the value  of time 
savings,  these  are calculated at the mean of the sample. 
Many  aggregate  models are extensions of the  gravity  model  such  that  in  the  process 
of calibration an equilibrium  relationship is explicitly established by  assuming  the 
stability of the  transport system characteristics  which  the  transport  planner wishes 
to vary. 

Aggregate  models also require  large  amounts  of  data  to  be  accurate.  Gunn et al (1980) 
found  that  to  provide reasonable  estimates of  the value  of time savings, at least 50 per 
cent of the  traffic  in  their  study  would  need  to  be  sampled. 
Gordon et al (1979) describe  disaggregate  models as seeming  to  havethefollowing six 
properties: 

individual behaviour is studied  directly; 
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an available body of choice  theory  can  be  invoked; 
a  wide set of modes can be considered; 
modern  estimation  techniques are employed; 
the  models are  less cumbersome  and  more  operational  than  traditional  methods; 
and 
being sensitive to  a  wider  variety of modal  attributes, these models  can test the 
impact of a  wide  variety of transportation  policy issues. 

This all is damning  criticism  of  aggregate  methods,  but  Gordon et  al conclude  that  they 
do  not believe that  all six properties are actually  fulfilled by disaggregate  models. Also 
they believe that  when  the  results of a  disaggregate  model are applied,  the  forecasting 
system suffers  from  a  wide  variety of faults so the greater accuracy of  some  parameters 
may not  improve  the  overall system. Hence,  there  may  bea  place  foraggregate  models 
despite their disadvantages. 

4 

. 



CHAPTER 3-A BRIEF  DISCUSSION OF THREE  AGGREGATE 
MODELS 

The  most  commonly  used  aggregate  models are the  gravity,  entropy and abstract 
mode  models.  Gravity and entropy models are used to  describe  aggregate  spatial 
patterns of activities  and  the  respective  theories are analagous to  the  physical  theories 
they are named after. 

GRAVITY THEORY 
Gravity  theory  describes  the  spatial  interaction between two or more  points  in  a 
manner analogous  to  the  gravitational  attraction  between  bodies  in  a  physical system. 
The basic form is: 

t.. =’, pi p. s..2 
IJ l 11 (3.1 1 

where  tij is the  flow  from  point i to  point j (degree of spatial  interaction), -/ is the 
constant of proportionality,  Pi  and Pi are the  populations of i  and j respectively  and Sij is 
the  distance  between  i and j. This  model  can be generalised  to: 

t.. 11 = y Pi Pj sij-p, p > 0 (3.2) 

so that  tij is an unweighted  geometric average of Pi and Pi. 
The  additivity  condition  that  the  sum of the flows should equal the  total flow is not 
satisfied  by  unmodified  gravity  models.  This  condition  implies  that: 

tij = oi, vi 
l 

(3.3) 

and 

where oi and d j  are the  flows at the  origins  and  destinations  respectively. 
The  gravity model, equation 3.2, only satisfies  these conditions if: 

t.. = a .   b . 0 .  d.S..-fl 
(l I I I I I I  (3.5) 

where: 

ai = (xbj d j  s..-P)-l 
i 11 (3.6) 

and 

Without  the  additivity  condition  a  doubling of all 0;s and djs  would  quadruple  the flows 
rather  than  double  them. 
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With  known values of tii, Sij, oi, and di the  other  parameters of the  model (ai, bi, p)  can be 
calculated  by  recursion  techniques  from  equations 3.5 to 3.7 (Nijkamp 1979). 
Although  the  gravity  model  would appear to have no  behavioural basis, equation 3.2 
can be derived  from  a  simple  hypothesis  for  spatial  interactions  (Isard 1960). Namely, 
that  the  expected  number of trips  of  an  individual  from  i  to j is proportional  to  the 
population of j but  that  the  ratio of the  actual  number of trips  undertaken  from i to j by 
the  whole  population of i to  the  expected  number  of  trips  by  the  population of i is an 
inverse function of distance. 

ENTROPY  THEORY 
Normally  spatial systems  are complex  and  show  a  high degree  of uncertainty.  Entropy 
theory states that  the most likely  equilibrium stage  of a  closed system  is that  which 
maximises the  number  of  combinatorial  possibilities.  This  theory  identifies  the  most 
likely  equilibrium of a  spatial system in  a  manner  analagous  to  physical systems. 
Nijkamp (1979) shows  that  an  entropy  theoryformulation  yields  the  result  for  unknown 
t i j k  

11 I I I I  (3.8) t.. = a. b. 0. d. e-bcii, p > 0 

where: 

bj  = (C ai oi e-bcu-l (3.10) 

The  transportation  unit  cost  from i to  j, Ci,, is constrained to travel budget C so  that 

(3.1 1) 

I 

The system of equations 3.8 to 3.10 is similar  to  equations 3.5 to 3.7 with Sij and C,. 
performing  similar  roles as distance/cost parameters.  An  increase in  distance andl 
hence cost  for an origin-destination  pair decreases the  flow  between  them. 
There is, a pr ior i ,  no reason to believe that  people behave like  molecules  in  terms of 
gravitational  attraction  or achievement  of entropy levels. Alternatively  the  two  models 
can  be derived  from  specific  utility  approaches  (Nijkamp 1979) instead of from  a 
physical  analogy.  This means there is some  restricted  behavioural  foundation  to  the 
models. 

ABSTRACT  MODE  MODEL 
The  abstract  mode  model  (Quant  and  Baumol 1966) is based on  the  assumption  that 
cross-elasticity  between  modes exists only  with respect to  ‘best’variables.  The  abstract 
mode  model has the  form: 

(3.12) 

where tb is  the  number of trips  between i and  j  by  mode  k, L1 are the level-of-service 
variables for  the  kth  mode  divided  by  the  respective  ‘best’value  between i and j, and L$ 
are the ‘best’ values of each  individual level-of-service variable  between i and J ,  
regardless of which  mode  contains  the ‘best’  value for  any  given variable; this  vector 
constitutes  the  ‘abstract  mode’ as in general  no  such  mode  will  exist.  The  socio- 
economic  characteristics of zone i and  zone  j are described  by SEi and SEl respectively. 

As the level-of-service  variables are  normalised  with  respect  to  a ‘best’ value, any 
changes to variables which were not ‘best’  variables will have no  effect on the  travel 
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demand  predicted  by  the  model for modes which were not  changed.  This can clearly 
limit  the value  of the  model  (Hensher and Hotchkiss 1974). 

Gordon et at (1979) stress that  two  attributes  a  modified  abstract  mode  model 
possesses, which  disaggregate  mode  choice models do  not have, are the  ability  to 
predict  trip  creation  and  trip diversion. 

VALUE OF TRAVEL TIME  SAVINGS  USING  AGGREGATE  MODELS 

The aggregate models  discussed  (except  the  abstract  modes  model)  do  not  explicitly 
contain parameters relating  to  time. These are included  by  modifying  the  distance 
parameter Si, in  the  gravity  model or the  cost parameter Cij in  the  entropy  model  to be 
functions of time,  cost  and  distance. For  example, a  possible  functional  form is: 

siJ ] = CY, time + 0 1 ~  distance * cost 
C 

(3.13) 

I f  the  model  fitted  to  the data assumes such  a form, then an estimate of the value of 
travel  time savings can be made. 

7 



CHAPTER 4-A DISAGGREGATE  CHOICE  THEORY 

Many of the  disaggregate  choice  models  discussed  in  this paper  are based upon  a 
general theory of choice.  This  theory assumes rational  behaviour  by  individuals  who 
have perfect  information  on  the  alternative  travel modes  available to  them, and the 
attributes of the modes. In  most  models  the  individual is assumed to  consider  all  the 
information available to  h im and  choose  his'best' alternative. Not all models make this 
assumption however, and several models  with  alternative  choice  theories are 
discussed in later chapters. 

FUNCTIONAL  REPRESENTATION OF ATTRIBUTE  EVALUATION 
Lerman  and  Louviere (1978) state that  there is extensive support based on  theoretical 
and empirical research in  mathematical  psychology  and  related  fields  for  thefollowing 
assumptions of functional  measurement. 

Assumption 1 
For any observed  travel behaviour  there exists aset of attributes  that are functional1,y 
related  to its occurrence.  The level of the kth attribute of  alternative i is denoted zk. 
The levels of  these attributes  may  be  physically measurable, or  alternatively  a 
qualitative  factor,  for example, comfort  or  privacy,  which takes several levels. 

Assumption 2 
Every individual associates a  corresponding value x; with  the level of each  attribute 
zi, so that: 

Assumption 3 
Individuals  determine  their net utility Ui for  alternative i, consisting of a  combination 
of  levels  of the  attributes,  by  combining  the associated values of the  respective 
attributes.  That is: 

The  vector of overall  utility  for all  alternatives U = (U,, . . . , U,) is connected to the 
observed  travel behaviour B by means of  an  algebraic  function,  that  is: 

B = h(_U) (4.3) 

Then  by  substitution 

B = h (_U) 
= h  (g( t (z) ) )  
=W(z) 

(4.4) 

The  composite response function W relates the levels of each  attribute  to  theobserved 
travel behaviour. When investigating travel behaviour  it is  necessary to assume a  form 
for  the  composite  response  function, or derive one  from  behavioural  and  statistical 
considerations. 

9 



BTE Occasional Paper 57 

By  using  the values (utilities)  individuals assign to alternatives, equation 4.2 can be 
used to  determine  the parameters of an assumed functional  form of an  individual's net 
utility  function.  The  implied values  of the  attributes of the  alternatives  can  then  be 
calculated.  This  technique has been used  by  Louviere (1981), Louviereetal (1981) and 
IMG (1981) and is discussed  in  detail  in  Chapter 8. 

CHOICE MODELS 
Many  models of behavioural  choice use the  following  general  theory of choice  (Gunn 
et al  1980): 

individuals  in  the  market  segment  (same  choices  and  constraints) select the  option 
with  the  highest net utility Ui; 

to  account  for  unobserved  factors  and  interpersonal  variation,  the  utilities Ui are 
considered  to be randomly  distributed over the  population  being  considered;  and 
the  probability  that  a  particular  individual selects option  i  is  simply: 
Pi = Prob (Ui 2 Uj; V j  = 1, . . . , N) (4.5) 

Choice  models assume that  each  individual q defines  the net utility Ui,, of  alternative i, 
in  terms of the levels  of attributes  according  to  a  common  functional  form  (Hensher  and 
Johnson 1981). That is, as: 

Uiq = Sq (fq (z')! 
= U, (z'), (4.6) 

then U, has the same functional  form  for  all  individuals,  but has parameter values 
associated with each individual. 
To make  the  problem  tractable  it is usual  to  divide  the net utility Uiq into  two 
components:  the representative utility Vi,, and  a  stochastic  residual q, .  Then 

ui, = vi, + Ei, (4.7) 

The representative utility Vi, of alternative i, as perceived  by  individual q, is a  function 
of the values zl taken  by  the  attributes of alternative i and the  parameters Ok associated 
by individual  q  with  the levels of the  attributes.  Therefore: 

There are a  number of models used to  determineeq  and  hence Vi,, the representative 
utility  perceived  by  individual q, in disaggregate  models.  The  models arise from 
different  assumptions  concerning  the  stochastic  residuals. 

THRESHOLDS  AND  RESISTANCE  TO  CHANGE 
Most  models of individual  behaviour assume a  continuous response to  changes  in  the 
value of an attribute.  This is not  realistic because there  may  be some threshold  below 
which  an  individual  cannot perceive the  existence of change,  or  the  change is 
unacceptably small for  an  individual  to  consider  changing  or  reconsidering  his 
alternative. 
The  resistance of travellers  to  changing  their  mode  due  to  the  formation of habits, 
delays in  receiving  information  on  changes,  or  to  errors  in  perception,  results  in  a 
hysteresis  effect  analogous  to  hysteresis  in  magnetism.  That  is,  therewill  beadifferent 
response depending  both  on  whether  costs  change  upwards  or  downwards and on 
whether  there is a  previous  history of mainly  upwards  or  downwards  trends  (Goodwin 
and  Hensher 1978). 
These behavioural  properties  require  the  functional  form  of  the  net  utility  function 
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(equation 4.6), ortherepresentative  utilityfunction  (equation4.8), used bythemodel  to 
be  carefully  considered  when  evaluating  the  effects of small changes. In particular, 
linear models  would  be  very  suspect if used  to  predict responses to  small changes, as 
their  form  implies  a  constant rate of response  to all changes. 

CALCULATION OF THE VALUE OF TRAVEL TIME CHANGES 
The  behavioural  choice  methodologies  that use a  utility  maximising  approach  allow 
the value of travel time savings to  be  calculated  from  the representative utility  (equation 
4.8) once  the  coefficients have been determined.  The  procedure used to  calculate  the 
values of a  particular  time  attribute is tovarythetime  bytheamountof  interest  but keep 
the representative utility  constant  by  changing  the  cost variable. The value of the 
amount of time is the  change  in  cost  required  to  balance  it. 
If  a  model is based on  a linear  representative utility  function  thevalue of time changes is 
just  the  cost  coefficient  divided by the  time  coefficient  multiplied  by  the  time  change. 
Hence  the value  of time savings in  such  a  model is just  a  constant  multiple of the  time 
changes  and  is independent of the values taken  by  other parameters or  the relative size 
of the  time change. 

Non-linear models require  a separate calculation  for  each  time  change because the 
value of the  time  changes is then  dependent  on  thevalues of other  parameters.This is a 
more  realistic  representation of the value of time savings than  a linear model. 
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CHAPTER 5-SIMPLE DISAGGREGATE  MODELS 

The  simplest  disaggregate  choice  models are obtained  by  describing  the  results of 
travel decisions  in  terms of choice  functions whose coefficients are estimated  by 
appropriate  statistical  techniques.  It is  assumed in these models  that  the  choice 
functions are a linear combination  of  the  explanatory variables  of the  alternative 
modes.  The  explanatory variables can  be  the values of the  attributes  or  some  algebraic 
function of the  attributes. Care must be taken that the  explanatory variables are not 
correlated if a  technique sensitive to  correlations is used.to  estimate  the  coeffients. 
This  chapter  briefly discusses four  simple  disaggregate  models. 

LINEAR  PROBABILITY MODEL 
Consider  a  binary  choice  situation,  such as the  choice between two  competing 
transport modes. I f  it is assumed that  the  choice is the  result of a linear function of the 
explanatory variables, for  individual  q  the  model can  be written as (Hensher and 
Johnson 1981): 

where 

h = { , ,  
0 if first  option  chosen 

If second  option  chosen 

X k q =  kth explanatory variable 
Pk = coefficients 
tq = a st0chasti.c error assumed to be normally  distribute-d  with  zero mean and 
constant variance. 

This  model is known as the  linear  probability  model because theestimating  equation is 
linear and  the  dependent variable has as its  expected value the  probability  that  the 
second  option is chosen.  That is, the  expected value  of f, is the  probability  that f, = 1. 
Given  observations  for Q individuals  on  the values of the  explanatory variables and  the 
choice made, the  coefficients of equation 5.1 can be estimated by  ordinary least 
squares  regression. The  coefficients  can  then  be used to  investigate  the relative 
importance (value)  of the  explanatory variables and  to  predict  the  overall  behaviour of 
the  sampled  population if the values of some of the  explanatory variables  were changed 
by  a new transport  policy.  This  model is an example of a  disaggregate  model  which 
provides  an  aggregate  result  for  the  coefficients  of  a  choice  function.  The  coefficients 
minimise  the,errors  when used to  explain  the  behaviour of all the sampled population, 
not each indlvidual. . '  

The  binary  form (0,l)  of the  dependent variable f, leads to  restrictions of the values that 
can  be taken  by  stochastic  error tO. Watson  (1974)  shows that  for  theexpected value of 
the  error  term  to  be zero as assumed. the variance  of the  error is not  constant,  a 
condition  known as heteroskedasticity.  This means that  the estimated values for  the 
coefficients  obtained by .  ordinary least  squares regression are unbiased and 
consistent,  but  they are no  longer  minimum variance  estimates.  Because the  error 
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terms are not  normally  distributed,  the estimates  of the  coefficients are  also not 
normally  distributed.  This makes it difficult  to test the  significance of the values of  the 
coefficients and  of the  regression as a  whole, because no  confidence  can be placed  in 
the  computed F-test values. 
The use  of weighted least squares procedure  (Hensherand  Johnson 1981) can  provide 
minimum variance  estimates of the  coefficients.  However,  there  is  no guarantee that 
the  estimated values of the  dependent  variable f, will  be  between 0 and  1.  This is 
particularly  disturbing as f, may be  interpreted as a  probability. 

LINEAR LOGIT ANALYSIS 
Logit analysis  is  aimed  at limiting  the  problems  which  occur  in  the linear probability 
model as a result of having  a  dichotomous variable as the  dependent variable when 
using  ordinary least  squares regression. 
Let P,, be  the  probability  that  individual  q  chooses  mode 1 in  a  binarychoicesituation. 
The  logit of P,, (the  logarithm of the  odds of individual  q  choosing  mode  1) is defined 
as: 

Logit  analysis assumes that 

log Iq = 
P 

l-P,, k 
x P k  xkq 

This  formulation has the advantage that  the  dichotomous  dependent variable  of 
equation 5.1 has been transferred  to  a  variable  in  the range (-,W), 

Equation 5.2 can  be  used  with  grouped  (aggregated)  data i f  observations  are  repeated 
for each given value of the  explanatory variables. Ordinary least  squares regression 
can  be  used  to  eliminate  the values of  the  parameters  by  replacing P,, by rl/n, where rl 
is the  number of observations  choosing  mode 1 out of a  total of n  observations. A large 
sample size  is required  to ensure approximation  to  a  normal  distribution.  For  small 
samples appropriate  weights can be  used  with  weighted least squares regression to 
reduce any sample  induced bias (Hensher  and  Johnson 1981). 

If  grouped  data is not available, or  the values of the  attributes of the  alternative modes 
have different values for most individuals,  equation 5.2 can be  solved by  maximum- 
likelihood  estimation. 
The linear logit  model  need  not  be  restricted  to  a  binary  choice  situation. Hensher  and 
Johnson (1981) discuss  the  generalisation  to  more  than  two alternatives and  the 
analysis of the  model. 

PROBIT ANALYSIS 
Probit analysis  is a  generalisation of the  linear  probability  model  which  allows 
threshold values for  choosing alternatives. The  threshold values are assumed to  be 
normally  distributed over the Whole population.  The  probit  model  and  theestimation of 
its parameters is discussed  in  detail  in Watson  (1974). A brief  description of the 
formulation of the  model  follows. 
The  dependent variable f, is postulated  to take the values 0 or  1,  depending  upon  the 
values taken  by  the  explanatory variables Xkq. The  index I,, constructed for individual 
q, is a linear combination of the  independent variables: 
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(5.3) 

If rq is the  threshold value  of Iq  for  individual q 

The  threshold values are  assumed to be normally  distributed over the  population, 
N(0,I). This represents differences  among  individuals  which are either random or the 
result of  variables not  included  in  the  model. 

DISCRIMINANT ANALYSIS 

Discriminant analysis  was designed  to solve classification  problems,  with  the  aim of 
minimising  misclassifications,  but  by  a  probabilistic  extension of the basic technique  it 
can be  used to  produce estimates  of the  probabilities of mode  choice.  The  technique is 
only  appropriate  to  binary  choice  situations  where  the  population can be  divided  into 
two  subpopulations  on  the basis of the  choice  they made. 
It is usual to assume the  attributes  for  which measurements are  obtained are 
multivariate  normally  distributed and the  variance-covariance  matrices of the 
attributes are the same for  both  subpopulations.  The  discriminate  function is defined 
as: 

(5.5) 

where A is a  weighting coefficie:lrand Xpijisthevalueof  thepthexplanatoryvariable of 
mode  i Po, person j. 
Discriminant  analysis aims to  find values of the  weights h ,  such  that  the  between- 
subpopulation  variance is maximised relative to  the  within-subpopulation variance. 
This  provides  the greatest separation  between  thetwo  subpopulations and hence is the 
‘best’ contrast between the  subpopulations.  The  ‘best’ values of the  weights can be 
determined by a  matrix  equation  (Watson 1974). 

Watson  shows the  extension of discriminant analysis so that  probability  for an 
individual  selecting  a  particular  mode can be predicted, is no  more  than  a  special case 
of the  logisticfunction  in  which  the  discriminant  function is chosen as the  most  suitable 
linear combination of explanatory variables. 

ASSESSMENT 
In  a  comparison of the data requirements.  statistical  properties and accuracy of 
prediction, Watson concludes  that  ‘on  balance,  logit  analysis is the most appropriate 
tool  for use in  studies of travel  mode  choice’.  Probit and logit analysis both  require  large 
samples to ensure significant tests and a  normality  assumption  but  the  logit  resultsare 
easier to interpret. I t  should  be  noted  that  when Watson drew  his  conclusion  he  had  not 
considered  the  multinomial  methods  discussed  in  the  following chapters. 
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CHAPTER 6"MULTI~OMIAL  MODELS 
, .  

Multinomial  models are disaggregate  behavioural  models'tderived  from  theories of 
consumer  choice .behaviour. They are also probabilistic because they assign a 
probability of choice  to  each  possible  outcome,of a travel  decision. 
Multinomial  models are mainly used for  investiga:fing'mode  choice  behaviour,  but as 
the  coefficients of the representative utilityfunc?id'n:a're,estirnated it  can also be used to 
estimate the value of'time savings. The  most comm'o'nly used  model is  the multinomial 
logit  model  (MNL),  but  now  that  computational  procedures are available, the 
multinomial  probit  model  (MNP) can be used.. - 1 ' '  

5 ,  

, ; . . ,  

MULTINOMIAL LOGIT'ANALYSIS 
. . ' ,. ,,, ,:. ';> ,, , (  , 

. .  . . ,  
, .  

The  MNL  model  is.derived  by-assuming  that:",. : 

the representative utility of an alternative  is'a  linearcombination of its attributes, ie: 

the  Independence-from-Irrelevant  Alternatives (IIA). axiom is  valid;  and 
the residual terms  in  equation 4.7 obey  the  extreme value distribution, ie: 

Prob (ci < c)  =:exp (-exp (-c)) . ,  (6.2) 

The  assumption  that  the representative utility is a linear combination of the values of 
the  attributes  restricts  the  application of MNL  to  situations  where  higher  order  or  non- 
line-ar terms are not  significant.  Also  this assumes that  the relative importance of the 
attributes  in the  representative utility is the same across the  population.  Clearly,  this 
places a severe restriction  on  the  applicability of the  model unless homogeneous 
subpopulations are considered separately. 
The IIA axiom states that  the  ratio of probabilities of choosing  one  alternative over 
another  (where  both alternatives have non-zero  probabilityof  choice) is unaffected  by 
the presence or  absence of any  additional alternatives in  the  choice set (Hensher and 
Johnson 1981). This means that  the  model is not  applicable if all the  alternativesare  not 
sufficiently discrete. The IIA axiom  greatly  reduces  the  complexity of estimation and 
forecasting  procedures  making it convenient  to use when it is  valid  (McFadden et al 
1'977). However, undesirable  consequences  can  result  if  MNL is used when IIA is 
invalid.  McFadden et al  discusses the  application of diagnostic tests to  determine  the 
validity of the  IIA.  axiom. 

The  residual  term  assumption makes this  a  random  utility  model.  This does not mean 
that  individuals  maximise  utility  in  a  random  manner,  rather  that  the  utility  they are 
maximising  contains some unobserved  contributions. ,' 

With these  assumptions, the  probability that alternative  i is selected  by  individual  q: 

exp Vi, 

Z exp  Vjq 
p. = 

Iq 

J 
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exp C 82 z i  

C exp 82 z i  

k 
- 

I 

which is referred  to as the  MNL  model.  Stopher and Meyburg (1975) show  that  this 
model can be  derived  from  the  IIA  axiom  with  afairly  broad  assumption  concerning  the 
representative utility  function. 
The  MNL  model is usually  applied  to revealed preference data. That is, data  from 
choice  situations where individuals have had alternatives to  choose  between  and made 
a  particular  choice.  A  criticism  with  this  approach is that  often  individuals  do  not  know 
what the alternatives are, or what the values of  the  attributes  of  the  alternatives are. 
Also, observers  can have difficu’lty  in  determining  what  alternatives  (if  any) were 
considered  by  the  individuals  under  observation  unless  a very clear  choice  situation 
exists. 

Data  can be  gathered  for  MNL  by  a survey where  individuals  detail  the values of  the 
attributes of the  choice  they have made and, as they  perceive  or  know,  thevaluesof  the 
same attributes of the  alternative(s). A difficulty  can arise with  this  approach  when  the 
alternatives described  by  the  individuals in the  sample  are  not  sufficientlydifferent  and 
the  IlAaxiom  isviolated.  This survey procedure has been used  successfully  by Hensher 
and Johnson (1981). 
A  maximum  likelihood  procedure is used  to  determine  the mean  value  of the  attribute 
parameters Bk in  equation 6.4 over all  individuals  in  the sample. The  distribution of 
attribute parameters amongst  the  individuals is not  determined, even though  the  model 
examines decisions  by  individuals.  This  aggregation  during  computation makes the 
transfer  of  results over time  and space difficult,  and  at  times  uncertain (Hensher and 
Johnson 1981). 
The  MNL  model has the advantage of  being  computationally  convenient  with  a  number 
of computer packages  available, for  example  BLOGIT  (Crittle and Johnson 1980). 
The basic MNL  model  can  be  modified  to  remedy  violation  of IIA (McFadden et a l l977 
and Hensher and Johnson 1981); this  is  briefly  discussed later. It  may  not always  be 
necessary to  modify  the  MNL  model as Horowitz (1980) has demonstrated  that  with 
moderate  violations of the  IIA  property,  the basic MNL  procedure  produces  only  small 
errors  in  the parameters it estimates. 

FUNCTIONAL FORM TRANSFORMATIONS 
Gaudry  and  Wills (1978) suggest the  linearity  restriction  on  the  functional  form of the 
representative utility can be  relaxed  by  using  the  Box-Tukey  transformation  which  is 
defined as: 

The  location  parameter p is chosen  to  ensure  that  X + p is  greater  than  zero  for all 
observations. When p is equal to zero  equation 6.5 reduces  to  the  Box-Cox 
transformation. 
These transformations are used to  change  the  functional  form of the representative 
utility  function  equation 6.1 so  that 

This  is  then used in  the MNL model  instead of the  linear  form.  Although  this generalises 
the  form of  representative utility  it does not  allow  interaction  terms  between  attributes. 
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The results obtained  by  using  the  MNL  model  with  equation 6.6 are sensitive to  the 
values chosen  for h k  and pk (Hensher and Johnson 1981). Hence,  if  this  transformation 
is used,  an  investigation of the  effect of varying h k  and &would be  required  to  find  the 
maximum of the  maximum  log-likelihood  functions. For a  large  number of  parameters 
this  could  involve  considerable  computation.  The  Box-Tukey  transformation is an 
option  allowed  in  the  BLOGIT Package (Crittle  and  Johnson 1980). 

DOGIT  MODEL 
An alternative  logit  formulation is the  dogit  model  proposed  by  Gaudry and  Dagenais 
(1979).  The  model  allows  the  IIA  axiom  to  be  violated  by some pairs of alternatives  but 
not necessarily  all  alternatives. 
The  model is a  modification of equation 6.3 so that: 

exp Vi, + ai exp Vjq 

(1 + a.) X exp Vjq 
' j  

p. = 1 
'q 

where ai is a  non-negative parameter  associated with  the  ith alternative.  When  all the 
ai)s are  zero this  reduces  to  the  MNL  model.  All  pairs of alternatives  with  aiequal  to zero 
for  each  alternative  obey  the  IIAaxiom.  Although  thedogit  model can overcomethe  IIA 
assumption of the  MNL model,  apart from tests by  Gaudry  and  Wills (1979), there are no 
known  applications  to  individual  choice  situations  (Hensher  and  Johnson 1981). Box- 
Cox  transformations can be  used  to generalise the  functional  form of the 
representative utility. 
No  software packages  are known  to exist for  dogit,  but  Gaudry  and  Wills (1979) 
describe  a  maximum  likelihood  method  which  could  be used. A  disadvantage of the 
dogit  formulation  is  that  additional parameters ai will need to  be estimated. If  a 
preliminary survey or  other  knowledge  about  the  independence of  alternatives  is used, 
some of the ai's can  be set to zero hence  diminishing  the  computational task. 

MULTINOMIAL  PROBIT  MODEL 
The  multinomial  probit  model  (MNP)  isageneralised  alternative  to  the  MNL model. It is 
derived  by  assuming  that  residual  terms  in  equation 6.7 are  multivariate  normal 
distributed across alternatives rather than  independent  and  identically  extreme value 
distributed as for  the  MNL  model  (Daganzo 1979). This  allows  for  taste  variations 
among  individuals  and  for  covariance between  alternatives. Therefore,  the  error  terms 
in  the  utility  expressions are correlated (Hensher and  Johnson 1981), so MNP relaxes 
the  IIA  axiom.  MNP does not  lift  the  restriction of the  representative  utility  being  a  linear 
combination  of  the values  of the  attributes. 

When formulated  for  a  problem  with  N  attributes,  the  MNP  model  requires  the 
evaluation of an N - l  dimensional  integral  which  cannot  be  reduced to an analytic 
expression.  Although  procedures  for  the  estimation of the  parameters  in  a  MNP  model 
exist,  forexample  Daganzo et al(1977), Daganzo (1979) and  Hausman  and Wise (1978), 
with  more  than  a  few  parameters  they  require excessive computer  time  (Gunn et  al 
1980).  Therefore  MNP  provides  a greater  degree  of flexibility  than  MNL  but its 
application is limited  by  computational  difficulties. 

MORE GENERAL LOGIT  MODELS 
The M N L  model  described  earlier  in  this  chapter is a  simultaneous  model  with  the 
decision  being made simultaneously  on  the values of all  attributes.  This  section 
discusses generalisations  which  allow  alternate  decision  structures  and  relax  some of 
the  assumptions of MNL. 
The  simplest  modified  structure assumes that  the  choices are independent,  such  that 
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the  joint  probability of choice is a  product,of  the-individual,  probabilities. Separate 
utilityfunctions  exist  for each choice  and  are'additiWto  form  the  joint  utility.  Consider 
a  three  attribute  decision  process,'  IxJxK.  Then  the  separability of the  utility  furlctions 
implies'that:' " , 

' i  

u.. = ui + U. + Uk 
11 k l 

I (6.8) 

where  Ui'k is  the  joint  utility of an  ijk  combination  and Ui is the  part of theutility  due'to i 
and simi/arly?for U i  and  Uk.  The  joint  probability , .  

where 

Pi =, ,Prob (Ui >Ui'; V i i  I) (6.10), 

and  similarly  for Pi and P,. 
In  many  situations  the  attributes  that  define  probabilities are not  independent and 
mutually  exclusive. I n  these cases'a  conditional  model is more  realistic. 

, .  , .  

, '  

( I  , , . , ,  , , ..>. , , . , .  

SEQUENTIXC STRUCTURED ,MODEL' ~ ' ' I '  

1~"asequential  sfructured  modei  an'individua1,is assumed to make a c,hoice  onsome 
subgroup of  attrib,utes i,ndependent.of any other  choice, and then  to  makegubsequent 
choices  conditional  on  previous  choices.  There is an implied  hierarchical  structuring  to 
the  decision  process  with n,ofeed  back or  mutual  i,nteractions  between  decisions. Such, 
structurds'are alsd known 'as nested rhbdeis.'Figu're 6.1' shows the  possible  decision 
str,+ct,ures for ttiree  attribbtes:,thdIfirst  structure  isthesimultaneous MN'L model.  Sobel 
(1980) shou\is that  for  4'attributes  there  are 26 different'decision  structures. 

, ,  1 ,  , ' 8 , .  i I ", 

, . ,  . , , ,  8 ,  , . 7 -  I , , , , 2 ,  " . .  . , ,  
, .  

, , ,  
, .  

, m  
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, .  

i , ~ , j  . ' , k  , , i , '  j l .  ' , :  i , k  j " ,  k 
. . ,  

I , ,  , 8 , ,  , 1 ! ) ,  8 ,  

, ,  

, ,  , :, , , , . Figure.S.I., ,DecisiQn,  structures  for  three  attributes 
I , ,  : , ' , ,  , "  ~ , 

, , 4 ,, 1 , .  . . ,  , ' 

Tb,e,assumption of a c,hoice  ,hierarchy for,the  selection of an alternative fr0.m a ttiree' 
attribute  decision pr%ocess; IxJxK,  imp,liesthe  joint  utilityfunction is additive separable: 

where ' , " I ,  

Ui,k is  the  joint utilit,y  of an, ijk  comb,ination. _. I ,  , 

Ui ' is the  part  of  the  joint.  utdity  that is independent  of. j and  k. 
U,ii"' is the  part of the joint  utility o f  a choice  of j, which is independent of k, given  that i 

ukli, i's the  part of the  j'oint  utility'for  a  choice'of  k given that i and j have been  selected. 

I , . .  , , I .  

' 

: l  

has been selected. 
, ,  " 

, l  
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Therefore  the  hierarchy of the  decision process described  by  equation 6.11 is a 
decision i followed  by  a  decision  on j conditional  on i and a  decision  on k conditional  on 
i and j .  
The  joint  utility: 

u.. = v . ,  + e . .  

where  the  joint  representative  utility: 

IJk IJk Ilk (6.1 2) 

(6.13) 

and Eijk is the  random  component of the  joint  utility  function. I f  the q i s  are 
independently and identically  extreme value distributed,  the  joint  logit  model: 

(6.1 4) 

is obtained.  Ben-Akiva and Lerman (1979) give expressions  for  the  conditional and 
marginal  probabilities  P(k]ij),  P(j/i) and P(i)  which are used in  thesequential  estimation 
process  starting  from  the  lowest level of choice.  Although  a  particular  sequence of 
decisions is assumed, the  probabilities are not  mutually  interactive so: 

Pijk = P(i)  P(jli) P(k1ij) (6.1 5) 

RECURSIVE  SEQUENTIAL  STRUCTURE 

The recursive sequential  structure  incorporates  feedback  into  a  sequential  structure. 
At each decision level the  choice is  assumed to be  dependent  upon  the  previous 
choices  in  totality  rather  than  a  single  alternative  in  the  previous  decision.  The 
feedback is incorporated  into  the  utilityfunction as an additional variable. This  model, 
which has a  complex  form, is described  in Hensher  and Johnson (1981). 

From  these structures  three  models  called  the basic multinomial-logit,  the  sequential 
nested-logit  and  the generalised-extreme-value nested-logit  can be formulated 
(McFadden 1979, Hensher and Johnson 1981). The basic multinomial-logit is the MNL 
generalised to a  sequential  recursive  structure.  The  sequential  nested-logit is a 
modification  to  the  basic  multinomial-logit that permits  pairwise  attribute  correlation. 
The  final  model, generalised-extreme-value nested-logit  incorporates  a measure to 
allow  for  the relative dissimilarity  between  the  unobserved  attributes of alternatives and 
non-equal variances. McFadden (1978) shows that  the  multinomial and nested-logit 
are special cases of  the generalised-extreme-value nested-logit. 

Although these models have been formulated.  the  nested-logit  is  the least restricted 
form  implemented  (Sobel 1980). 
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CHAPTER 7-SOME OTHER  BEHAVIOURAL  MODELS 

The  models  discussed  in  Chapter 6 assume a perfectly  rational  utility  maximising 
individual.  Apart  from  the  sequential  logit  models,  the  individual is  assumed to base his 
decision  on  a  model  which is linear-in-parameters  and  with  simultaneous 
consideration of the values of all  attributes.  Such  models are compensatory  in that 
trade-offs  among  attributes are possible  with changes in some attributes  being 
compensated  by  specific changes in  one or more  other  attributes.  That is, a  high level 
of satisfaction  with one attribute compensates for low  levelsof  satisfaction  with others. 
In  contrast  to  compensatory  models,  non-compensatory  models  do not allow  trade-off 
behaviour.  This  chapter discusses two  models  which use a  non-compensatory  process 
and one  which is only  concerned  with  identifying trade-offs. 

THE  ELIMINATION-BY-ASPECTS  MODEL 
The  elimination-by-aspects  model is an attribute search model  in  which  attributes are 
compared  in  a  sequence  from  the  attribute  considered  most  important  by  the 
individual,  through  to  the least important.  The  principle used for  comparing  the values 
of attributes is that  the value must exceed some  standard  (threshold)  to  be  considered 
acceptable.  The  sequential  processing  of  information  is  referred  to as elimination-by- 
aspects (EBA)  (Tversky 1972). 
The EBA process as described  by ARRDO (1981) is summar'ised by: 

the  attributes are compared  starting  with  the most important  through  to  the least 
important; 
if the value  of the  attribute  being  considered is less than  the  minimum  acceptable 
standard,  the  alternative  that value belongs  to is eliminated  from  further 
consideration;  and 
steps 1 and 2 are repeated until  only  one  alternative  remains. 

The  second step  is the EBA  step. If  all alternatives are eliminated  rather  than  obtaining 
a  single  preferred alternative, the  process is taken  back an iteration and the alternatives 
remaining at that stage are chosen  between  by  some  other  decision  criterion. 

The EBA process can be  developed as either  a  deterministic  binary  choice  model 
(Recker and  Golob 1979) or a  probabilistic  model  (Tversky 1972, Richardson 1978 and 
ARRDO  1981). The  probabilistic  model has the advantage  of not  requiring repeated 
simulations of the  decisions as would be  needed if a  deterministic  model was used. 

PROBABILISTIC EBA MODEL 
The  following  description of the  probabilistic EBA model is  derived from  the  three 
alternative  choice  problem  described  in ARRDO  (1981). The  three  alternative  choice 
problem can be  represented  by  the Venn diagram  in  Figure 7.1. Each alternative is 
represented by a  circle  encompassing  the  attributes  for  which  the  alternative  provides 
aminimum levelofacceptability.Theareaofthecircleforeachalternativecorresponds 
to  the sum  of the  importance of the  attributes.  The areas of overlap  between  thecircles 
represent attributes  which are satisfactory  for  two or more alternatives. 

The set notation used is that 2 is the set of attributes  which are satisfactory  for 
alternative x alone, Xy is the set of attributes  which are satisfactory  for alternatives xand 
y  but  not z, and T z  is the set of attributes  which are satisfactory for all  three 
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'Figure7.1. Venn  diagram of alternative  sets 

, 

alternatives. The sets C,,C,,C, represent alternative-specific  constants  which  are 
unique  attributes  for  the respective  alternatives. The  alternative-specific  attribute sets 
are  mutually  exclusive  and  must  contain  a  non-zero value. 
The area of each set I (set),  is'given  by  the  sum of the  importances over  relevant 
attributes. To enable, thb  standardisation of the  importances,the measure: 

. ' ,  

is used, where  the  summation is over all sets (including C,,C,,C,) exceptwz.  The set is 
excluded as it  contains  attributes  which are satisfactory,  for all  alternatives, and 
therefore  cannot  eliminate  any alternatives. 
To,derive  the  EBA  model  consider  the  probability of selecting  alternative x. There  are 
three ways in  which x can  be selected: Firstly  on  the  first  attribute  examined,  secondly 
by  initially  considerind'  an  attribute i n   w a n d  then  choosing  x over y  in  subsequent' 
comparisons  and  thirdly  by  initially  considering XZ and  then  selecting  x over z in l'ater 
comparisons.  The re,spective probabilities are': ' ' ,  

, t  ' , '  
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where  P(x!xy) is the  probability of selecting  x  in  a  comparison of x  and  y  and  P(4xz) is 
the  probability of selecting  x  in  a  comparison of x and z.'Therefore: 

P(XlXY) = 
c, .+ 'I(X)' + I(=) 

I(X) + I ( E j  +'l(Y) + I($) +c,+ c, (7.4) 

c, + I (X) + I(xy) 

l(57) + I(Ty) + I(?) + I(P) + c,+ c, 
P(xJxz) = 

The  total  probability of selecting  x is  given by 

c,+ I(X) + I(V) P(x1xy) + I(=) P(4xz) 
- 

K 

An  attribute is considered  satisfactory if it lies within  specific  percentage  tolerance of 
the  maximum  satisfaction level forthat  attributeoverall  alternatives  (Recker and Golob 
1979). That is, the  satisfaction Sjks associated with  attribute j of  alternative k as 
perceived by  individual  q is acceptable when: 

Sjkq>' (1 -Ti) Max [S j~ql  < (7.8) 

where Ti is the  tolerance  for  attribute j. 

The EBA model can  be  solved by  maximum  likelihood  methods.  The  alternative- 
specific  attributes are required so that  the  probability of an alternative  being  chosen is 
non-zero. A  zero probability of an  alternative  being  chosen  can  occur  if  the  chosen 
alternative is unsatisfactory  on  any  attribute  and  either,of  the  non-chosen  attributes is 
unsatisfactory  in all  alternatives. 

The EBA model is fitted  to  the  data  in  two stages  (ARRDO 1981).  Firstly,  the  program 
tests a range of tolerances and determines  the most likely  tolerance  for each attribute  in 
turn.  Then,  once all the  most  likely  tolerances have been determined,  the  optimum 
alternative-specific  constants are calculated.  The  entire  process is then  repeated  until 
the  model  is  considered  to have converged. 
The  EBA  model can be used to  predict  the  effect of changes by  the  calculation of 
attribute  elasticities.  The  elasticities are calculated by making  a  change  in  the 
satisfaction level of an attribute and determining  the  resultant  change in the  predicted 
probability of selecting an alternative.  By  calculating  both  the  cost and travel  time 
elasticities  the value of travel time savings can be  calculated. 

SATISFICING MODEL 
The  satisficing  model is a  sequential search model across  alternatives, rather  than 
attributes, as done  by  the  EBA  model.  The  theory of satisficing  (Richardson 1978) 
involves the  sequential  examination of alternatives while  comparing  the  attributes of 
the  alternative against a set of minimum acceptable standards. As soon as  an 
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alternative  which is satisfactory  in  all  attributes is found,  thesearch is discontinued  and 
that  alternative is chosen. 
If at a later time  one  or  more of the  attributes of the  chosen  alternative is considered  to 
have become  unsatisfactory,  a search for  a  new  alternative  will  begin.  The level at 
which  the set of  minimum  acceptable standards  is  set can  be  lowered  when  satisfactory 
alternatives  are hard t d  find,  or raised when  satisfactory alternatives are easy to  find. 
The  randomness of the  satisficing  model is introduced  by  the  order  in  which 
alternatives  are searched because those  searched early have a greater probability of 
being selected. The  satisficing  model  can be broadened  by  considering  the reasons 
why  a  search  could  be  discontinued.  Richardson suggests three  major reasons: 

if the  search costs time,  money  and  effort  the  search  will  stop  when  the  expected 
gain  from  examining  another  alternative is less than  the  cost of the  extra 
examination; 
the  decision maker is forced  to  accept  the last alternative  considered because he is 
faced with  not  only  the  cost of extra  comparisons,  but also the  cost of rejecting  the 
most recently  considered alternative; and 
the  existence of a  limit  on  the  number of alternatives which  can  be  examined. 

These rules  can  be  extended to give a  formulation of a  probabilistic  satisficing  model 
from  which  the  elasticities  and  the  relative values  of the  attributes  can be calculated. 
Richardson (1978) compares  the  results of a basic  EBA model,  a  satisficing  model and 
the  multinomial  logit. He found  that  they gave different  results  but  he was unable  to 
decide  which was the  more  realistic  choice process.  He concluded  that EBA modelsare 
appropriate  when  many  characteristics are considered,  or  when  there are likely  to be 
dependent  choices (IIA disobeyed). Whereas, the  satisficing  model may be  more 
appropriate  when  there are many alternatives to be  considered  and  a  complete search 
is not  expected. 

PRIORITY EVALUATOR 
The  priority evaluator method is concerned  with  identifying  the  trade-offs  individuals 
are willing  to make by  examining  the  priorities assigned to  competing  and  costed 
alternatives (Hoinville and Berthoud 1970). 
The basic procedure is to present subjects  with  a  range of  values (usually  three) of 
attributes  with  a  cost associated with  each value. The  subjects are  given a  limited 
amount of money  (tokens) to spend  in  order to choose  their  best  combination  of values 
of the  attributes  that  they  can achieve within  the  limited  budget.  This  method has been 
used to  identify  the  relative  importance of environmental  factors  such as noise and 
pollution,  and  social  factors  such as accessibility  (Hoinville  and  Berthoud 1970), as 
well as, the  importance of cost,  time  in  different  activities  and  characteristics  such as 
type of journey,  reliability  and seat availability  (Hoinville  and  Johnson 1971, 
Wildermuth 1976). 
Although  this  method has been applied to several transport  situations,  a  difficulty 
associated with  it is the necessity to  provide  realistic  relative  costs  between  the values 
taken by all  attributes. Even when  obtained these relativecosts  may  substitute  for  costs 
as perceived  by  individuals,  or  are based upon  information  subjects  would  not  usually 
consider.  Its advantage is that  it  provides  travellers  with  a  restricted  travel  budget and 
identifies what they are willing to pay to  change  the  attributes  and  their  relative 
importance.  The  changes  in  the  transport system presented  to  subjectsshould  include 
values which  describe  their  current  journey  but it would appear impractical  to make the 
budget  allocated  reflect  the  amount  the  subject is willing  to  pay  to  change  the values 
taken  by  some travel attributes. 
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CHAPTER  8"FUNCTIONAL FORM OF UTILITY  FUNCTIONS 

In  the  discussion of disaggregate  choice  theory  in  Chapter 4 the basic assumptions of 
functional measurement  and the  resulting  functional  relationships  (equations 4.1 to 
4.4) were introduced.  The  disaggregate  models discussed  above generally assume a 
functional  form  and  then  go  on  to  estimate  the parameters of the assumed form.  Most 
travel demand  models, as a  result of computational  difficulties, are restricted  to 
specifications  which have linear  parameters. The  Box-Cox  transformations  discussed 
in  Chapter 6 allow  insight  to  be  obtained  into whether linear  or  logarithmic 
transformations are appropriate. 
The  arguments  concerning  function  form are summarised  in  the  following statement 
by  Lerman and Louviere (1978): 

This restriction (of a linear functional form) is  not particularly burdensome if  one already 
knows that a particular  nonlinear specification is appropriate,  since, by judicious useof  piece- 
wise linear  forms  and nonlinear  transformations of the dependent  and  independent  variables, 
one can approximate  most nonlinear parameter functions fairly well. However, lacking 
guidance as to  the  appropriate functional form. and  given,  with existing techniques, the 
virtually infinite number of candidate transf'ormations, choosing among specifications on 
goodness-of-fit criteria is far more likely to lead to one of the  numerous incorrect 
specifications  than  the  correct  one. 

The  determination of the  functional  form of decision  functions is the  province of 
mathematical  psychology  (psychometrics).  The areas which are of potential  interest 
for transport  modelling are functional measurement, information  integration  theory, 
conjoint analysis  and direct  utility assessment. 

FUNCTIONAL  MEASUREMENT 

The  aim  of  functional measurement is to  provide  methods  for  measuring  cognitive 
quantities  on  interval scales. Anderson (1976)  describes an interval  method  for 
functional measurement which evolved from  a  general  theory of information 
integration.  The  following  discussion is a sum,mary of Anderson's  work;  a  complete 
description is contained  in  Anderson  (1981). 

The linear model 
Suppose  two  stimulus variables  are thought  to  combine  in an ordinary  Row x Column 
factorial design, so  that each cell of the  design  corresponds to a  pair of stimuli. 
Subjects  judge  the  product  on overall desirability  by  assigning  a  number to the 
stimulus  combination  in  each  cell. These numbers are assumed to obey the  simple 
linear model: 

Rij = C, + Ri + C; (8.1) 

where Rij is the response to  the  stimulus of the  ithsubjective level of  the  rows Ri, and  the 
jthsubjective level of the  columns C,. C, is a  constant  which  allowsfor an arbitraryzero 
in  the response  scale. 
If the  linear  model is correct, and if the  response  is an interval scale, then  a  two-way 
graph of the data will appear as aset of parallel lines. If  the  parallelism is observed, it  not 
only  supports  the linear model?  but also indicates  that  the response  measure  is an 
interval scale. It can  also  be shown  that  the  row means of the  design are interval scale 
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estimates  of the  subjective values of the  stimuli,  and  similarly  for  the  column  stimuli. 

The multiplying model 
In  some,.situations a multiplying,rule  for  the,integration of two,stimulus variables  may 
seem appropriate-.  A Row' X Colljmn  factorial  design is a'g'ain used.  Th'e numbers 
assigned by  subjects are  assumed to  obey  the  multiplying model: 

where'the, parameters have th,e's,ame  mea'ning as for  the  linear ,model. 
Suppose  that  the  subjective values Cj are  known,  and are plotted  on  the  horizontal axis. 
If the  multiplying  model is correct and the, response  measure  is an  interval scale;then 
the data in  r0w.i  of  the  design  will  plot as a straight  line  against Cj with  slope Ri. Thus, 
the  two way graphof  data  will  plot as a l,inear fan of lines. ' '  

In general the  subjective values Cj will  not  be  known,  but  if  the  model is correct  and  the 
response measured  is an  interval scale,: then. the  column  meansare  interval scale 
estimates of the  subjectives values of  column  stimuli. Therefore, the  column means 
may  be  used as ,provisional values . ,  of Cj to test the  linear  fan,  prediction. 

There  are  three'qualifications,om  functional: measurement: 
'0 parallelism  may,be  obtained even though  the  linear  model is  invalid; '~ 

0.  i t  depends entirely  on  the  empirical  validity'of  the  integration  function;  and ', 

0' more  than  one  integration  model .could 'imply  the same, pattern. 

The  first  qualification arises becauseif  both,  (not  just o,ne) of the premises  are incorrect, 
then  parallelism.could beobtaiwd,  butonlyinveryspecial cases. I-f onlyone  premise is 
wrong  parallelism,  will  not  be  obtained. , . , - I  

Although  the  assumption  that  the response is,interval  scaled  can  be  overcome, ,by 
linearising a rank-order scale, it is  necessary that  the  integration  model  be  empirically 
valid. , .. 
An'  important  instance of two  models  having-the sam'e pattern  occurs.under  certain 
conditions  when  the linear adding  and averaging models- both  imply paraltelism, So 
observed'parallelism wou'ld not  discriminate  between  'the models:. 

~, , J  

, .  
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The averaging model I .  

The  averaging  model  isused .in the  information  integrating fh.eory of: attitudes, The 
hypothesis is that  when  an  indi'vidual receives add,itipnal info.rmation, th.is is  averaged 
.w,ith  his  prior  attitude A, fo produce  the  new attitude:. 

. . , m ,  . ,  - .  . , ,  , , , ,  , . ,  

A=w,A,+Cwisi (8.3) 
l 

where  si  is  the scale  value of  the ith piece of information.  The  weights w,and wi sum to 
one and  represent  the  relative  importance pf the  prior.attitude  and  the ne? pieces of 
information  ,respectively. . . , ~ I .  ' .; I - ' ' . ,  , , I _  

The  distinguishing test  between the  linear  adding  and  averaging  models  is  called  the 
-cross-over  test by Andecsan. Basically th-e. cross:over test, uses the  same two-,way 
graph as the  parallelism.test for the,linear  adding model,.but.looks.forsome.of the  lines 
crossing over.  The'occu.rrenc,e,,of  a  cross-over indicates the-suitabi1ityof:theaveraging 
mo,del for describi'ng,,the. responses being  considered. , . - /  I ,  
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THE RATING METHOD 

The  rating  method is designed so that  subjects  respond  in  a manner suitable  for use 
with  the above theory.  The  rating scale is limited  to  a  fixed  range  of responses with 
experimental  precautions  to  restrict bias in  the response. 

Louviere (1978)  and Anderson (1981) recommend  the  inclusion of  end anchors  and 
possibly  filler  combinations  in  the  experimental  design  to  restrict extreme  responses. 
End  anchors are treatment  combinations that  are presented  prior  to  the  start of the 
experiment and are intended  to give the  subjects  a  frame of  reference within  which  to 
respond.  They  represent  extreme  combinations  which are more  extreme  than  those  the 
subject is to  judge.  Hence,  they set the ends of the  response  scale. 

Floor  and  ceiling  effects refer to  the  propensity of subjects  to learn the  most  and least 
desirable items  on  a  judgement scale, and  to  adjust  their responses up or down 
accordingly.  This is a  problem  for  experimental designs in  which  subjects  judge 
combinations  of  item values. This can  be overcome by the use of filler  combinations 
which are treatment  combinations  more  extreme  than  those of interest in  the  study. 
The  inclusion of filler  combinations  allows  subjects  to  learn  them and respond  up  or 
down  to  them  and  not  the  items of interest. 

An alternative to end  anchors is to  provide  a  standard  treatment  combination  for 
subjects  to  judge  against.  In  a  carefully  controlled  experiment,  it  may  be  possible  to 
allow  subjects  to  choose as a  standard  the  treatment  combination  which  corresponds 
most  closely to  their  usual  experience and to assign an arbitraryvalue  to  this  treatment 
combination. 

It is  also desirable  to  randomise  the  order of treatment  and  the  combinations of 
treatments between subjects, or when  more  than  one  factorial  experiment is 
administered  to  each  subject,  among  the  lists of treatment Combinations presented. 
This  reduces  the biases arising  from  the  order  in  which  treatment  combinations are 
presented  but, it can complicate  the  administration  ofthesurvey and increasethecost. 

When the  rating  method is used together  with  functional measurement theory  a  two 
stage fitting  process is indicated.  Firstly  functional measurement theory is used  to 
determine  the  appropriate  model  form!  then  this  model has its parameters determined 
by  ordinary least squares regression.  In  practice  the  first step  may  be difficult if more 
than  a  few  attributes are involved and sometimes  higher  order  terms  such as square 
terms  may be considered  applicable.  In these cases only  the  regression step is 
performed. 

This  technique has been successfully used by  Anderson (1976), Norman (1976), Levin 
et al (1977),  Lerman  and Louviere  (1978): Meyer  et al (1978), Louviere et al (1979), 
Louviere (1981), IMG (1981)  and ABT (1982). Not all  these  papers  used both stages of 
the  method.  Some were more  concerned  with  finding  the  form of the  model whereas 
others used the  interval scale property of the  rating  method  to  fit  a  general  function. 

The use of experimental designs, functional measurement  and the  rating  method is 
more  a  laboratory  experiment,  although  it may not be conducted  in  a  laboratory,  than  a 
field measurement  of  behaviour. The real world  validity of these  models has been 
confirmed  in several cases by  Lerman and Louviere (1978), Louviere et al (1979), and 
Levin et ai (1982). In  particular  they  show that functional  forms derived in  the  laboratory 
can  be transferred  outside  for  application. 

MAGNITUDE  ESTIMATION 

Magnitude  estimation  and  the  rating  method  both  yield  a  direct  numerical response to 
a  combination of treatments.  Magnitude  estimation  allows responses to be arbitrarily 
large,  whereas the  rating  method has a  fixed response  scale. Unlike  the  rating  method, 
magnitude  estimation does not  obey  simple  algebraic  models  for  stimulus  integration. 
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Anderson (1976) concludes  ‘that  the  rating  method  can  yield  true  interval scales and 
that  the  method of magnitude  estimation  is biased  and invalid.’ 
Horowitz (1978, 1981) has applied  magnitude  estimation  techniques  with some 

Ekman’s Law of Psychophysics  which states that  variability  in  subjective  units  tends 

a  change  in  the  standard  stimulus  will cause a  constant  multiplicative  change  in  all 

The  simplest linear statistical  model of  one-way experimental  designs  that has these 
multiplicative  effects is: 

8, success. The  statistical  methods  used  to analyse the  trip  rating  relied  on: 

to  grow as a linear function of subjective  magnitude; and 

ratings. 

where Ri, is  the subject’s magnitude  rating of a  treatment  combination  with Si as the 
standard  stimuli, Ai as the  jthvalueof  thetreatment,  SAij is an  interaction  term  and cijthe 
error  term.  If  more  than  one  main  effect  isfound  to  beslgnificant  a  multiplicative  model 
results, but  with  antilogs  of  the values of  the  standard  stimuli  and  treatment  being 
parameters. 
The  two  studies  by  Horowitz (1978, 1981) are the  only  applications  to  transport 
problems  known  to  the  author.  Due  to  the  limited use of  magnitude  estimation  and  the 
criticism  of  Anderson (1976), it  would appear that  the  rating  method is to be preferred. 

CONJOINT  MEASUREMENT 
The  ordinary~rating  method  and  magnitude  estimation  both use the basic principle of 
having  subjects assign numerical responses to  treatment  combinations  in  a  factorial 
experiment.  The  numerical responses either  form  an  interval scale or  can be 
transformed  to one. Conjoint measurement uses ordinal responses to  determine  the 
functional  form used by  the  subjects.  Krantzand  Tversky (1971) describe  thetheoryof 
conjoint measurement in  detail  for  experiments  with  three variables. 
The  analysis of  responses by  conjoint measurement  is a  complex task but  it  can 
distinguish  between  the  following  functional  forms  in  three variables: 

A + P + U  

(A + P) U 

AP + U 

APU l 
This  can  be  computerised  (Louviere 1978 refers  to  two packages) and  the  results can 
be  used to derive an interval scale related  to  the response obtained  in  the  experiment if 
the data  is sufficiently  rich  in values (Krantz  and  Tversky  1971).Thiscan  becarried  out 
only  when  the  composition  rule is known. 

Louviere (1978) states that  although  conjoint measurement could  be  applied  to travel 
behaviour  modelling,  he  knows’of  no  applications. 

FRACTIONAL  EXPERIMENTAL  DESIGN 

The basic principles of experimental  design  are  described  in Winer  (1971). The most 
commonly  used  multi-variable  plan is the  full  factorial  experiment  which  permits  the 
estimation  of  the  effects of  all interactions  among  the  treatments.  However, if it is 
desired  to  investigate  the  effect  of  more  than  three  or  four  treatments at several levels, a 
full  factorial  experiment  quickly  grows  to  a  large  number of combinations.  It is not 
practical to present subjects  with  the task of responding to a  large  number of treatment 
combinations. 

, 
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Chapter 8 

The  number of treatment  combinations can  be reduced  by  using  a  fractional  factorial 
design rather than  a  full  plan.  In  choosing  a  fractional  factorial  design  it may be 
necessary to assume that  the  effect of some  interactions is negligible as their  effect can 
be confounded  with  some of the  main effects. Hahn  and  Shapiro (1966) and Webb 
(1971) provide  plans  for  fractional  factorial  designs  which  describe  the  degree of 
confounding  (if  there is any)  in  the designs. Although  they  provide  a  readily available 
source of  designs, the  designs  presented  are  not  necessarily  the most efficient  for  a 
given  experimental  situation. 

Information  overload can occur if a  subject is required  to  consider seven or  more 
treatments(IMG1982).Whenthesubjectwantstocombinetheeffectofthetreatments, 
overload can occur  with as few as four  treatments. I f  presented  with  too  much 
information  subjects  may  ignore  all  thetreatments  except  the  one  ortwo  attributes  that 
are  most important.  This may not be an inaccurate  representation of decision  making 
when  the levels of most  treatments are changed  and  the  subject  only  considered  the 
changes most  important to him.  A  more  common  situation  would  be  when  onlya few of 
the  treatment levels  were changed  and  a  decision made on  this. If only  treatments of 
lesser importance were changed  their  relative  effects  on  the  decision  would need to be 
known.  Therefore,  for  a  model  to be useful it must not  only  include  the  effects of 
important  attributes,  but also their  relation  with lesser attributes  and  their  inter- 
relation. 

A  suitable  method  for  avoiding  information overload, while  providing  details  on  all 
effects  is  the  method of partial  (or  differential)  information  (Norman 1976 and IMG 
1982). Consider  three  treatment  factors S, T  and U. To determine  the  interaction 
between  these factors  an S x T x U  three-way  factorial  design  could  be used. An 
alternative  would  be  to  consider  three  two-way  factorial designs, S x T, S x U and T x U, 
so that  all  pairwise  combinations of each information  type are presented. Each  sub- 
design  allows  an  independent test  of the  related  two-way  interactions.  The  results  from 
each sub-design  can  be  combined  to give the  overall  three-way  interactions. 

IMG (1982) discusses the  generalisation of the  method of partial  information to more 
than  three  attributes. Each sub-design is assumed to  beafull  factorial  design  although 
a  fractional  factorial  design  could be used. The  method of partial  information  simplifies 
the response  task into  combinations of  fewer treatments  but  it does this at theexpense 
of having  a greater number  of  treatment  combinations to be rated. 
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CHAPTER  9-ISSUES IN  THE  APPLICATION OF CHOICE  MODELS 

This  chapter discusses issues which  should be considered  when  using  disaggregate 
choice  models.  The issues of  concern are: 

sampling,  specification  and  data  errors; 
aggregation of  results; and 

updating and transferring  results. 
Each of these  can result  in  biased  predictions  from  a  model.  A balanced approach is 
required so that it is not  attempted  to  minimise  one  source of error,  when  others 
dominate  the  predictions. 

SAMPLING,  SPECIFICATION  AND  DATA ERRORS 
Horowitz (1981) discusses  these errors  in  detail. A brief synopsis of his  exposition  is 
given here. 
Standard  statistical  procedures  for  the  estimating of errors  in  the values of parameters 
generally  do  not  apply  to  choice  models.  This is because the  correct  functional  form of 
the  model is not  known a priori and the  data  used is not  error free. 
Statistical  sampling  errors  in  probabilistic  choice  models arise from  estimating  the 
models parameters from  finite  data sets. Although  the  computation  of  confidence 
regions  for parameters  is not  difficult (see Horowitz),  converting  them  into  a 
confidence  region  for  choice  probabilities is complicated  by  the  non-linear 
relationship  between  the parameters  and choice  probabilities.  The  choice  probability 
confidence  regions can be  estimated by linearising  the  model  by  a  first  order  Taylor 
series expansion  in  the parameters or by uslng  anon-linear  programming  formulation. 
The five  types  of specification  errors  considered  by  Horowitz are: 

inclusion of an  irrelevant  explanatory variable in  the  model; 

random  utility  components  that are not  independently  and  identically  distributed 

random taste variations; 
omission of a relevant explanatory variable from  the  model; and 
random  utility  components  that  are  correlated  with  explanatory variables. 

These  are errors  resulting  from an incorrect  description of the  model or the use of a 
model  inappropriate for the data. 
The use of erroneous  data will produce  a biased model. A commonlyoccurring  error of 
this  type is the use of  group-mean values (eg average income)  for  explanatory 
variables. The use of  non  random surveys  can produce biased  parameter values, but 
corrections can be made to  produce  unbiased  parameter estimates. 
Horowitz  calculated examples  of the  errors  which can occur  in  choice  probabilities.  He 
concluded  that: 

(IID); 

the  errors  caused  by  random  taste  variations.  omission of a  relevant  explanatory  variable  and 
grouping of data  all  are  large  enough to seriously  degrade or destroy t h e  practical  value of a 
model.  The  errorscaused by non-flD random  cornponentsof utilityaresrnaller. although these 
errors! as well as sampling  errors,  clearly can impair  a  model's  practical  value. 
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AGGREGATION OF RESULTS 

Koppelman (1976) describes  two  procedures  to  obtain  aggregate  predictions  from 
disaggregate  models.  The  first  approach is to aggregate  the  model  to  obtain a model 
that  can  be  estimated  with  aggregate  data  (Figure 9.1). These results  are  used  to make 
aggregate  predictions. When non-linear  choice  models  are  used  with  heterogeneous 
aggregate  groups, a consistent  aggregate  function  will  include parameters  of both  the 
choice  function  and  the  distribution of the  independent variables. The  estimation 
procedure is based upon  the  distribution of the  independent variables as well as their 
mean values. 

Theoretical 

structure model 
- model choice 

Aggregate Estimate 
aggregate - Aggregate 

model prediction 
parameters 

Figure 9.1. Aggregation of model  structure  prior  to  estimation 
l 

The  second  procedure is to  estimate a disaggregate  choice  model  using  disaggregate 
data and  then  aggregate  the  results  when  the  model is used  for  prediction  (Figure9.2). 
The advantage of  this  approach is that  no  assumptions  about  the  future  distribution of 
the  independent variables  are required  until a prediction is  made. 

Disaggregate 
input data structure data 
Predicted Future  data 

- 

Theoretical 
choice 
model 

Estimate 
disaggregate 

prediction procedure model 
Aggregate - Aggregation - 

parameters 

Figure 9.2. Aggregation  of  model  structure  after  estimation 

An  intermediate  procedure exists between these two extremes. Figure 9.3 shows  the 
aggregation  which  commonlyoccurs  when  calculating  the  parametersof  disaggregate 
models  due to  the  solution  techniques used. In these cases, although  the  models 
describe  individual  rather  than  group  behaviour  and use disaggregate data, the 
parameters calculated  apply to the average of the  group. 
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Figure 9.3. Aggregation of model  structure  during  estimation 

There are many potentially  useful  techniques for producing aggregate results  from 
disaggregate models. Figure 9.4 shows a  taxonomy of aggregation  procedures 
adapted  from  Koppelman (1976). 

The naive procedures are the  simplest  approaches  but  potentially  producethegreatest 
errors  in  the  prediction.  The  procedure is to  substitute  the mean  values of the 
independent variables into  the  disaggregate  demand  function.  In general this 
prediction  will  be  incorrect, because a  function of a mean is usually  not  equal  to  the 
mean  value  of the  function.  The  magnitude of the  error depends upon  the  form of the 
demand  function  and  the  distribution of the  dependent variables. The  predictions 
made by naive procedures can  be adjusted  to  account  for  differences  in  choice set 
availability  when  such  differences  exist. 
Enumeration  procedures use the  disaggregate  nature of the  model and the  data. 
Complete  enumeration uses the  characteristics of a/ /  individuals and the  alternatives. 
The  expected  behaviour of all individuals is predicted and the  results averaged to  give 
the  aggregate  prediction.  In  general  this  information  will  not be known or the 
computational task will  be  too  large for experimentation  with  different  transport 
policies. To restrict  the  amount of information  required  and  the  computation,  sample 
enumeration  can  be used. This averages the  choice  probability  for  a  sample of the 
individuals  in  the  prediction. 
Procedures  forsummation  or  integration  weight theprobabilitydensityfunction forthe 
independent variables (Koppelman  and  Ben-Akiva 1977). This is done  by  integration 
when the  density  function is continuous, or by  summation  when  the  distribution is 
discrete. For  a  large  number of variables the  integration  or  summation tasks require 
considerable  computation. 
Statistical  differentials  procedures  obtain an aggregate  function  by  linearising  the 
disaggregate  choice  function  by  the use  of a Taylor series expansion  and  then 
calculating  the  expectation over the  aggregate  prediction  group  (Talvitie 1973). The 
resulting series is truncated so that  aggregate  demand is  expressed in terms of means, 
variances and  covariances of the  distribution of dependent variables. 
Classification  procedures assign individuals  belonging  to  the  prediction  group  to 
identifiable classes and use the average value of each  to  predict  aggregate  results for 
each class. A weighted average summation  procedure is used to  compute  the  overall 
aggregate decisions. The  classification may  be on  the basis of the  choice made, 
individual  characteristics,  geographical  location or some combination. 
Reid (1978) advocates the use of a  utility  classification scale which can be used for 
simply  scalable  models  such as the  logit  form.  The  principle of utility  classification is 
that  the  information needed to  predict  each  individual’s  choice is contained in the 
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Chapter 9 

utilityscales of theattributesof  the alternatives  of choice.  Cross-classification betiween 
the  utilities of the  different alternatives picks up full-scalevariances and  between-scale 
covariances, thus  describing  the  full  distribution of the  individual  choice  factors  in m 
aggregate sample. Classification  on a total  utility scale is more  efficient  than  a 
classification  by  a  limited  number of variables  because it  includes  the  effects of minor 
variables. Reid  describes  the  full  procedure  in  detail. 

To  determine  and  compare  aggregation  errors  the  enumeration  method is considered 
to  be the  correct  method  for  obtaining  aggregate results from  the sum of individual 
choices.  The usual  measure of aggregation  error is the  percentage  root mean  square 
(RMS)  of the  proportion  choosing  different alternatives. This is expressed as: 

Erms = [ C  ((Bj - Pj)/Pj)2Pj]” 
i 

where Bj is the  proportion  choosing  alternative j estimated  by  the  aggregation  method 
being tested and Pi is the  proportion  obtained  by  the  enumeration  method. 
Reid (1978) compares several aggregation  methods  for  a sample  of 771 workers  in  the 
San Francisco  Bay Area using  a  multinomial  logit  model.  The RMS errors  he  obtained 
are shown  in  Table 9.1. The  classification  by  auto  ownership is the  method 
recommended  by  Koppelman (1976) but  the  error  is  much  largerthan he obtained  with 
different data. Reid  suggests that  this is a  result  of  Koppelman’s  data  being  for  asimpler 
choice  situation  with less disaggregate level-of-service data. 

TABLE 9.1-RMS ERRORS FROM DIFFERENT AGGREGATION PROCEDURES 

Method .No of ciasses Per cent error 

Naive - 40.0 
Statistical  differentials - 121 .o 
Classification  by  city 17 17.9 
Classification  by  auto  ownership 4 21.7 
Classification  by  utility scale 4 3.1 
Source: Adapted from Reid (1978). 

By  using  the  utilityclassification  procedures  Reid  reduced  the  aggregation  error  from 
38.4 per cent  in  the naive case to 2.3 per  cent  with  four  utility classes and 0.5 per cent 
with  eight classes. He concluded  that  although  the  utility  classification  method is 
directly  applicable  only  to  simple  scalable models, it  may  be  useful  for  non-simple 
scalable models as well, eg probit  models. 

UPDATING  AND TRANSFERRING  RESULTS 
Large surveys  to estimate disaggregate  choice  models are  expensive but are required 
for  accurate  predictions  from  the  model.  Often  when  using  the  model  in later  years or at 
a different  location  there is neither  the  time  nor  the  money  to  conduct  a  large survey for 
the  development of a  new  choice  model.  Therefore,  procedures  for  adapting  the  results 
of previous  large surveys  are required. 
All  the  factors  which  affect  the  reliability of predictionswill also affect  the  updating  and 
transfer of a  model. I f  a  model is unsuccessful  in  the area for  which  it was developed, 
there is no reason for it to be better  in  a  different  location. To be transferable,  it is not 
enough  for  the  model to merely fit existing data, it must  represent  the causal 
relationship  between  attributes  (Atherton and Ben-Akiva 1976). This means that 
aggregate  models are not  reliably  transferable because aggregate  model  coefficients 
are bound  to  a  particular  zonal  structure. 

Atherton and Ben-Akiva (1976) proposethe  following  procedures as being available for 
transferring  models. 
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Naive  approach 
The naive approach  is to use the  existing  model  with  its  original  coefficients  and 
substitute  parameter values describing  the new situation.  This assumes that  the  choice 
process  is  fully  explained  by  the  model  although,  in  most  models,  the  constant  terms 
account  for  factors not explicitly  explained by the  model. 

Adjustment of constant terms 
If  the  validity of model  coefficients  other  than  constant  terms  is  accepted,  then 
aggregate  data  can  be used to adjust  the  constant  terms so the  model  replicates 
existing  aggregate data. 

Transferring with a small disaggregate sample 
This  procedure uses a small  sample  of  observations of individual  choices  assuming 
that  the  sample is representativeof  behaviour in the  study area. Thesmall  disaggregate 
sample  could  be used to re-estimate the  coefficients of the  original  model 
specification.  Then  only  the  new  small sample coefficients  need to be  used  in  the 
model,  but  the use of asmall sample  is  a potential  source of error. Also because  a model 
specification  is  good  statistically  on  one  particular  data set, it does  not  guarantee  that 
using  the same specification  will  result  in  reliable  coefficients  with a different  data set 
from  another area. 
Other ways in  which a small  disaggregate sample could  be  used  are  to re-estimate only 
the  constant  terms  using  the  other  original  coefficients,  or to combine  the  small sample 
coefficients  with  the  original  coefficients  to  produce  modified  coefficients. 

Bayesian updating 
Bayesian  updating uses the  original  and small sample  coefficients  to  estimate  updated 
values for  the  coefficients. For  a single  parameter  model,  with  the  assumption  that  the 
coefficient is normally  distributed,  the  appropriate  formula  forthevalueof  the  updated 
coefficient B,, is: 

with: 

where: Bo is  the value of the  original  coefficient; 

U’, is  the  variance of the  original  coefficient; 

Os is  the value  of the  small  sample  coefficient; 

O$ is the  variance  of  the  small  sample  coefficient;  and 

4 is  the  variance  of  the  updated Coefficient. 

So for a one parameter model  the variances  of the  original  and  small sample 
coefficients are required  for  this  updating process. Lerman et ai (1976) give  the  formula 
for  the  generalisation of this  updating  process  to  multi-parameter  models  where  the 
variance-covariance matrices  for  the  coefficient estimates  are  needed. 

38 



Chapter 9 

Atherton and Ben-Akiva (1976) tested some of the  different  updating  and  transferring 
procedures  with  three sets of disaggregate data of  mode  choice  for  work  trips and 
concluded  that  the Bayesian updating  procedure  using  a  small  disaggregatesample is 
the most effective  procedure  for  transferring  well-specified  models.  Hsnsher  and 
Johnson (1981) are less optimistic  due to the  infrequent use of updating  procedures 
and  reported  poor  performance  when used. It appears that  the  problem results from  the 
suitability of the  range of explanatory variables when  applied  to  a new situation. So a 
well-specified  model is required  for  the  realistic  transfer  or  updating of results. 
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CHAPTER  10-COMPARISON OF METHODOLOGIES 

The  preceding  discussion has identified  theavailable  behavioural  decision  modelsand 
shown that they are dependent  on  assumptions as to the  manner  in  which  decisions are 
made, the  functional  form of the  decision  rule assumed, thesolution  technique used to 
solve the  problem,  the  data  required,  and, if appropriate,  the  distribution  of  residual 
terms. 

Heggie (1976) discusses a  number of  issues which  should be considered when 
selecting  a  choice  model. 

Human  behaviour  cannot  be  represented  by  a  continuous linear function.  Afunction 
which  allows  non-linearities and thresholds is required. 

Individuals  exhibit  habitual  behaviour and their responses  may  be restricted  by 
either  a lack  of knowledge of the available  alternatives, or  by  only  considering 
alternatives when  their  chosen  mode  deteriorates. 
The perceived  values of  attributes are not  the same as those  which are  measured or 
observed. This is a  result of the way humans perceive attributes  in  a  particular 
context. 
The  decision  to make a  journey is dependent  upon  the modes  available.  If a 
particular  mode was unavailable  a  decision to cancel  the  journey  may  be made. 
Conversely,  the  existence of a mode  (for  example  a steam train)  may  create  a 
journey. 
The value of travel time savings during  working  hours is not  only  dependent  on 
marginal  productivity but should also include  the  effect of business travellers 
working  while  travelling and the  possibility of this  being  more  productive as a  result 
of  fewer distractions. 

Preference  functions represent the  difference between the  opportunity  cost  of  time 
and  the  disutility of travelling.  Linear  preference  functions are uncompensated 
because they assume the  marginal  utility of money  remains  constant. 

The value of travel  time savings  is dependent  upon  the  availability of substitute 
activities  and  their nature, as well as the size of the  time saving.  For example,  there 
may  be  few substitute  activities  for small time savings on  a  journey  to  work. 

Utility is dependent  on  both  the  person  and  the  circumstances  which  can  give 
aggregation  problems.  Variations  between  people  can  result  in  behaviourthat,  while 
rational, is not  homogeneous and  leads to  errors in the  predictions made by  models 
which  produce  aggregate  results. 
Often  a  model uses revealed preference data. Thissuffersfrom  the  problem  that  in  a 
study  which  investigates  the  effect of time and cost,  the values are  multicollinear as 
they  both  will  in general depend on the  distance of the  journey. 
Values of travel attributes  supplied  by travellers may  be biased due  to  question 
design, perception  problems,  post  justification of choice  and  the  difference  between 
what  they state they  will  do  and what they  actually  do. 
For the  prediction of  traveller decisions in response to  changes  to be correct,  the 
changes  must be  publicised  so  that  travellers are aware of  theirexistence  and value. 
Also some changes may  lead  to  a  decision  not  to travel rather  than  a  change  in 
mode. 
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Goodwin  and  Hensher (1978) discuss  the  following  additional issues. 
0 However  rational  people are in general, there  will always remain  a  certain 

unpredictability  and  random  element  at  the  individual level. This  may  be  a  result of 
the  attributes of the  individual  or  the  transport  modes  which are not  included  in  the 
model, or  irrational  behaviour. 
To  be  a  useful  experimental  tool  a  model  should  be easily manipulable;  the 
resources, computing  facilities  and  manpower needed to generate outputs  should 
be neither so great nor so specialised  that  sensitivity  testing  or  the  investigation of 
alternative  futures  is  impractical. 

e If  time  isan  important  consideration  in  atravel  choicesituation  thetotal  journey  time 
should  bedivided  into  itscomponents.  For  example, in-vehicle, waiting,  walking and 
transfer time. 

0 Delays  in  obtaining  or  reacting  to  information  can  result  in  adependenceon  thetime 
since  a  change was made. 

It is not necessary for  a  model  to satisfy all  the above issues as, in  particular  contexts, 
some may  not  be relevant or  particular  assumptions  may  not  be  considered  important. 
The  overall  effect of these issues is the need for  a  flexible  model  which does not use 
certain  restrictive  assumptions  or, at least, allows  its  assumptions  to be  tested. 

For an investigation of the value of travel  time savings a model  with  the  following 
properties  is  desirable: 
e 

e 

e 

e 

e 

e 

e 

the  choice  function  (if  the  model uses one) is non-linear  with  discontinuities; 
the  individual's  knowledge of the available alternatives is accounted for; 

the  perceived  and observed values of attributes  coincide; 
the  journey  context  can  be  distinguished; 
it  provides  disaggregate results; 
it  makes  efficient use of the data; and 
does not  require excessive computation. 

When using any model  it is  necessary to  accept  a  number of assumptions  or  limitations. 
Table 10.1 compares  the  important  characteristics and assumptions of the  models so 
that  properties  which can be  traded-off  may  be  examined. 

All the  behavioural  models  in  Table 10.1 assume a  decision  structure  which is, at  best, 
an approximation  to  actual  human  decision  making.  The  most  appropriate  decision 
process  will  depend  on  the use to  which  the  results are to  be  put.  For example, the MNL 
model has  had considerable success in  predicting responses to  transport  policies 
which  do  not  go  outside  the  range  of  limitations  of  the data used  to  calibratethe  model 
despite  its  assumption of decisions  being made simultaneously  on  the basis of a linear 
utility  function. 
Each  functionally based model is limited  in  the  forms it can take by  the available 
solution  techniques.  In general a linear  relationship is required,  but  like  ordinary least 
squares, powers of the values of the  attributes  can  be used for  some  transformations 
such as Box-Tukey.  Maximum  likelihood  methods  require  that  the  terms  in  the 
expression  are  not  pairwise  correlated  otherwise  biased  estimates results. Hensher 
and Johnson (1981) discuss  how  to  correct  the  biased estimates. 
To  investigate  the value  of  travel time savings a  non-linear  utility  function  with cross 
product  terms is desirable  so  that  the value  of the savings depends  not  onlyon  thesize 
of the saving but  the  context  within  which  it is  made. 

Behavioural  models  do  not  contain  parameters  which  describe  all  the  attributes  of  the 
alternatives or of an individual's  socio-economic  situation  that  can  influence  the 
person  making  the  decision.  Residual  error  terms  can  be  used  to  compensate  for 
omitted  or  unobtainable  information  and  behaviour  which  would be considered 
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irrational  by  the  decision  making  process assumed in  the  model.  Some  models  only 
require  the  assumption of a  distribution  for  the  error  terms  when  testing  the 
significance  of  the parameters estimated  by  the  model. 

It can  be  expected  that  there  will be  taste variations  among  individuals,  but  many 
models  do  not  allow  this  desirable  property.  Those  that  do, have the advantage of 
explicitly  allowing  for  variations  in  the  population  without  relying  on  residual  terms  to 
account  for  it. 
Although  many  models are based on  theories of individual  behaviour,  the  techniques 
used to solve the  model  may  produce  only mean aggregate  results  with  no  distribution 
information,  thereby  losing  information  on  individual  variations.  Although  the  ultimate 
aim of any  model is to provide  aggregate  predictions,  information  concerning  the 
distribution of behaviour  in  the  studied  population is required  to  determine  the  impact 
of  changes. 
Regression based models  such as the linear probability and  linear logit  models  yield 
aggregate  results because only  one  observation  for each individual  is used. Usually 
these  data  come  from revealed preference  situations.  In  contrast  functional 
measurement uses ordinary least  squares regression  with  data  on  multiple  decisions 
by each individual to give a  model  for each individual. 

The  amount  of  computation  required  to  yield  results  can vary greatly  between models. 
Some  use software  which  is  either  readily available or  not  difficult  to  write,  others may 
possibly  be  obtained  by  modifying  existing  software.  Unless  there is a  special reason 
for  using  a  model  which  requires extensive software  development  or is computationally 
inefficient,  it  should be  avoided. 
The  data  requirements  of  the  models have not  been addressed here because the 
amount of data  will  not  only  depend  on  the  model  chosen and how  efficiently  it uses the 
data, but also the  situation  to  which  it  is  applied. 
None of the  models  discussed  in  this paper  can be selected to estimate  the value  of 
travel  time savings without  accepting some assumptions  or  limitations.  For example, 
none of the  functionally based models  can  explicitly  allow  for  discontinuities  in  the 
decision  rule,  but  those  with  non-linear  functions may be able to  approximate  a 
discontinuity. 
The  two  models  which  come closest to  meeting  the  desirable  properties  are  the  priority 
evaluator  method  and  functional measurement. Both  models  provide  the  subjects  with 
alternative  trip  descriptions  to  choose  between  and  produce  disaggregate  results.  The 
perceived and  observed  values coincide because the values  of the  attributes are 
provided  in  the  trip  descriptions. 
The  choice  function  used  by  functional measurement  does not  explicitly  allow  for 
discontinuities.  The  priority evaluator method has the  relative values of the  attributes 
imposed  on  the  model  and is not  suitable  for  determining  the value  of travel  time 
savings. 
If it is acceptable to have aggregate results, then  the  Elimination-by-Aspects or 
Satisficing  models  should  be  considered.  Alternatively, if revealed preference  data is 
obtainable, MNL may be  acceptable. 
The  model least restricted by its  assumptions  and  which  allows  most of them to be 
tested is the  method of functional measurement. Functional measurement produces 
disaggregate  results  in  that  a  model is built  for  each  individual and the  individual  results 
are aggregated  by  either  full  enumeration  or  producing  an average choice  function. 
The Bayesian updating  technique  could be used  to  investigate seasonal effects  on  the 
value of  time as well as providing  an  updating  mechanism  for  the model. 
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