
The Economic Efficiency of
Lane Differentiation Policies

Staff paper given by Dr Mark Harvey
to the 28th Australasian Transport 
Research Forum, 
28-30 September 2005, 
Sofitel Wentworth Hotel, Sydney



 

ATRF 05ATRF 05

 
 

28th Australasian Transport Research Forum 
Sydney, 28–30 September 2005 

 
 

 
 
Paper title: 
 

The Economic Efficiency of Lane Differentiation Policies 
 

Author: 
 

Dr Mark Harvey 

Organisation: 
 

Bureau of Transport and Regional Economics 

  
Contact Author Details: 
Postal address: GPO Box 501, Canberra, ACT, 2601 
  
Telephone: (02) 6274 6720 
Facsimile: (02) 6274 6816 
Email: mark.harvey@dotars.gov.au
 

 
28th Australasian Transport Research Forum Page 1 

mailto:mark.harvey@dotars.gov.au


 

 
Abstract: 
Lane differentiation can be achieved either through pricing or regulation or a mixture of both. 
Policies to achieve lane differentiation include charging different prices for travel in different 
lanes, high-occupancy vehicle (HOV) lanes, high-occupancy toll (HOT) lanes and truck-only 
lanes. 
 
From a mathematical model, formulas are derived for economically optimal lane charges in 
an unconstrained first-best situation, in a second-best case where the charge for the slow 
lanes is fixed, and a third-best case where, in addition to a fixed charge in the slow lanes, a 
group of vehicles is allowed to travel in the fast lane for free (a HOT lane).  
 
A quantitative application of the model with parameters set at realistic levels is developed to 
further examine the different policy options. The model features a value of time distribution 
for traffic derived by assuming average time values and coefficients of variation for different 
vehicle classes and combining the distributions for the different classes. 
 
Results are provided for six policy options: no pricing, optimal congestion pricing without and 
with lane differentiation, second-best optimal lane pricing with zero charge in the slow lanes, 
a HOV lane, and a HOT lane with third-best optimal pricing. Price-based lane differentiation 
policies are shown to be most beneficial to traffic with high values of time, and least so for 
traffic with average values of time. First-best optimal lane pricing can achieve a better 
economic efficiency outcome than optimal congestion pricing without lane differentiation, but 
the improvement in not large in proportional terms. Second-best optimal lane pricing can be 
significantly more economically efficient than no charging. HOV and HOT lanes perform 
poorly in terms of economic efficiency. The reason is that, unlike pricing solutions, regulatory 
means of allocating traffic to lanes are unable to cleanly split the traffic stream at a single 
value of time. 
 
Conversion of a HOV lane to a HOT lane can achieve more balanced lane utilisation, but the 
economic efficiency gains may be largely offset when the less-visible costs of slowing down 
high-value-of-time vehicles in the fast lane are taken into account. 
 
The economic efficiency of truck-only lanes is even worse in the model because the values of 
time for trucks, when expressed per unit of road space occupied, are not significantly 
different from those of private cars. 
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1 Lane differentiation 
 
In congested cities throughout the world, governments are looking for ways to make better 
use of existing infrastructure and to limit the impacts of congestion on freight and public 
transport. A subset of policy instruments employed to achieve these aims involves 
differentiating between traffic lanes either by restricting lanes to certain classes of users or 
charging vehicles for use of a less congested lane. 
 
The most common example is high-occupancy vehicle (HOV) lanes whereby a lane is 
reserved for vehicles with either two or more, or three or more occupants. Buses are 
included. The hope is that HOV lanes will encourage ride-sharing so the same transport 
task can be achieved using fewer vehicles leading to gains in the efficiency of road use 
with savings in fuel consumption and emissions. Under-utilisation can be a major problem 
for HOV lanes. In US, a number of HOV lanes have been converted to high-occupancy toll 
(HOT) lanes, whereby other vehicles are permitted to travel in the HOV lane on payment 
of a toll. (BTRE 2002, pp 33-34). HOT lanes are also seen as a ‘thin-edge-of-the-wedge’ 
strategy to prepare the public to accept congestion pricing (Fielding and Klein 1993). 
 
Another example of dedicated lanes is truck-only lanes. By separating trucks from other 
traffic, it is hoped that truck-only lanes will enhance safety and stabilise traffic flow. 
(Caltrans 2004). A few examples of truck-only lanes exist in the US. Truck-only lanes may 
be seen as a way to improve freight access to intermodal terminals and ports. 
 
As these examples show, lane differentiation can be achieved either by regulation — 
decreeing which classes of road users have the right to travel in which lanes — or through 
pricing — charging different tolls for different lanes. The HOT-lane concept employs both 
methods. 
 
The objectives of lane differentiation are varied — traffic flow, service quality of public 
transport, environment, access, safety, and energy. The present paper is concerned 
almost entirely with the objective of economic efficiency. The value to society of the 
impacts of lane differentiation is measured by summing the economic benefits and costs 
regardless of to whom they accrue. The sum total is referred to as ‘economic welfare’. 
The paper also examines the distributional implications for different policies for traffic with 
different values of time. 
 
2 Economics of traffic allocation to lanes 
 
For the most economically efficient lane allocation outcome, no vehicle should be able to 
reduce the total cost of travel to all road users by changing lanes. Say the marginal social 
cost of a vehicle travelling a certain distance in lane 1 was $3 and it was $2 in lane 2. 
Then a change from lane 1 to lane 2 would save society as a whole $1. 
 
Drivers seeking to minimise their private costs will attempt to change lanes to engender 
equality of marginal private costs between lanes. In equilibrium, vehicles in all lanes will 
travel at identical speeds. The main difference between private and social costs of travel 
on a congested road is the externality a road user imposes on other road users by slowing 
them down. If the mix of vehicles having differing costs is the same for the different lanes, 
then the externality cost of congestion should be the same for all lanes. The gap between 
social and private costs should therefore be the same for all lanes. Equality of marginal 
private costs between lanes should be consistent with equality of marginal social costs. 
The equilibrium split of traffic produced by the free market appears to be the most 
economically efficient split. 
 
Hence, on the face of it, lane differentiation seems to be an economically inefficient policy. 
But this need not be the case. The marginal cost of a vehicle, whether private or social, 

 
28th Australasian Transport Research Forum Page 1 



 

depends on both the value of time and the speed (which determines the time taken). In 
mathematical terms: cost = f(value of time, time taken). This leads to an interesting 
possibility. If the traffic could be split up so that the high value-of-time traffic travelled in a 
less congested lane or lanes at a high speed, and low value-of-time traffic travelled in a 
more congested lane or lanes at a lower speed, the marginal social costs could still be 
equalised. At the same time, by offering road users a choice of two price–quality 
combinations instead of one, the economic welfare of road users as a whole could be 
improved, and the road space used more efficiently. 
 
For brevity, the rest of this paper is written, for the most part, in terms of two lanes, lane 1, 
the slow lane, and lane 2, the fast lane. It should be understood that, in practice, there are 
likely to be at least two slow lanes and at least one fast lane. 
 
Say a road user incurs c1 in generalised costs in the slow lane and c2 in the fast lane, 

. By switching from the slow lane to the fast lane, he or she saves  in costs. 
At the same time, he or she pays 

21 cc > 21 cc −

12 π−π , the symbol π  representing the charges levied 
for travel in the respective lanes. The driver will stay in lane 1 if 1221 cc π−π<−  and 
switch to lane 2 if 1221 cc π−π>− . If cost is a linear function of value of time, we can 
write  where v is the value of time for a vehicle, comprising both 
driver/passenger costs and vehicle operating costs. t is the time taken to travel the length 
of road in the lane indicated by the subscript. All vehicles having a value of time below 

( 2121 ttvcc −=− )

)( ) ( 2112 tt*v −π−π=  will travel in lane 1 and all vehicles having a value of time above v* 
will travel in lane 2. In line with Verhoef and Small (1999, p.5), we refer to v* as the critical 
value of time. 
 
The times taken in the respective lanes depend upon the total traffic in the lanes. Hence 
to ensure that traffic moves faster in lane 2 than in lane 1, there has to be less traffic in 
lane 2, that is,  to ensure that 21 qq > ( ) ( )2211 qtqt >  where q1 and q2 refers to the volumes 
of traffic in the respective lanes. 
 
3 Optimal lane pricing 
 
The theory of optimal pricing for congested roads with undifferentiated lanes is well 
known. If we set up an optimisation problem to maximise willingness-to-pay (the area 
under the demand curve between zero and the quantity consumed) minus total costs, we 
find that the total price paid by users ( π+= cp ) should equal the marginal social cost. 
However, average private cost falls short of marginal cost by an amount equal to the 
externality cost that the marginal road user imposes on other road users. A congestion 
charge equal to that externality cost has to be levied to ensure that the quantity of travel is 
at the economically efficient level. In mathematical terms: 

π==− q
dq
dtvcp  where v  is the average value of time and, assuming that road-user cost is 

proportional to time taken, . An additional vehicle entering the traffic stream slows all 
other vehicles down increasing their time taken by dt/dq. Multiplying this by the average 
value of time for all users gives the additional cost imposed on the average user. Multiplying 
by the total number of users, q, results in the full externality cost. 

vtc =

 
To analyse the two-lane situation, the demand curve has to be split into a series of 
demand curves each having its own value of time. If we were to line up these demand 
curves side by side, in order of value time, we would have a demand surface  as 
illustrated in figure 1. With lane differentiation by price, the surface is split at the critical 
value of time, v*. The time–quantity relationships for the two lanes, 

( v,qp )

( )11 qt  and , are 
independent of user’s values of time. However, the same travel time requirement will have 

( )22 qt
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different cost implications for different users, depending on their value of time. The cost 
surface for lane 1 is ( )[ ]v,qtc 11  or, with costs proportional to time, . Similarly for 
lane 2, the cost surface is ] or 

( )11 qvt
( )[ ]v,qtc 22 ( )22 qvt . For any given value of time, the 

equilibrium traffic quantity occurs at the intersection of the demand surface with the price 
surface, given by the cost surface plus the charge, ( )[ ] 111 v,qtc π+  for lane 1 and 

 for lane 2. The total quantity for lane 1 is found by integrating the 
quantities for values of time from zero to v*, and for lane 2, from v* to infinity. 

( )[ ] 222 v,qtc π+

 
 

v 

q 
0 

$ 

v* 

 
 

 
Figure 1 Demand surface with lane split 
 
Total economic welfare is the sum of the total willingnesses-to-pay minus total costs for 
the two lanes. Willingness-to-pay is the volume under the demand surface bounded by 
quantities and v*. The mathematical derivation of the optimal lane prices is provided in the 
appendix. The appendix is in terms of a general relationship between cost and time to 
allow for the fact that vehicle operating costs are not proportional to time taken. For the 
exposition, here, a proportional relationship, vtc = , is assumed. Setting the derivatives of 
economic welfare with respect to the quantities in equal to zero, yields the normal optimal 
congestion pricing results for each lane. 

11
1

1
1 q

dq
dt

v π=  and 22
2

2
2 q

dq
dt

v π=  

Setting the derivative with respect to v* equal to zero produces the result: 

2
2

2
221

1

1
11 q

dq
dt

vt*vq
dq
dt

vt*v +=+ , that is, the marginal social cost for a vehicle with a 

value of time of v*, should be the same for both lanes. Since v* is the same regardless of 

lane, , so with an optimal traffic split 21 t*vt*v > 2
2

2
21

1

1
1 q

dq
dt

vq
dq
dt

v < . If the marginal 

vehicle (one with value of time v*) switches from lane 1 to lane 2, it saves  in 21 t*vt*v −
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private costs, but, with 12 vv > , the cost imposed on other vehicles, 1
1

1
12

2

2
2 q

dq
dt

vq
dq
dt

v − , is 

exactly offsetting. At this optimal lane split, economic welfare cannot be improved by altering 
the allocation of vehicles to lanes. 
 
Substituting the optimal congestion prices into the expression for the optimal lane split: 

( ) 1221 tt*v π−π=− , hence: 
21

12

tt
*v

−
π−π

= . 

For any given traffic split there will be a pair of optimal congestion prices, one price for 
each lane. However, there with will be only one pair of congestion prices consistent with 
the level of v* needed to obtain the optimal split. Optimal lane pricing is therefore fully 
consistent with optimal congestion pricing. Just as optimal congestion pricing requires 
charges to vary with location and time of day, the optimal charges could also vary with 
lanes. 
 
The appendix goes on to derive a formula for the second-best optimal lane charge for 
lane 2, when the charge for lane 1 is fixed. This is relevant for situations where it is not 
possible to levy any charge for lane 1, but lane 2 is a toll lane. It could also apply where 
there is a toll in lane 1 that is fixed for political or legal reasons. The appendix explains the 
rationale behind the formula in detail. Briefly, with the charge in lane 1 set below the 
optimal congestion price, an additional vehicle joining lane 1 causes a welfare loss equal 
to the difference between marginal social cost and price paid (average private generalised 
cost plus any charge, which is the consumer’s valuation of the marginal unit). The second-
best optimal price for lane 2 is that which splits the traffic in such a way that the marginal 
welfare losses in the two lanes are equal for a vehicle with value of time v* switching 
lanes (the gain from leaving the from-lane equals the loss in the to-lane). In the calculating 
these welfare losses, the formula takes account of all the secondary effects on other 
vehicles from a vehicle changing lanes: crowding out of existing vehicles when an extra 
vehicle moves into a lane; induced traffic in the lane from which the vehicle leaves; and 
the effect on quantity in lane 2 from the change in the charge necessary to shift the 
marginal vehicle. 
 
Figure 2 compares the different charges. With undifferentiated lanes, there is a single 
optimal congestion charge. With optimal lane pricing, the charges for lanes 1 and 2 lie on 
either side of the undifferentiated optimal charge. In the second-best situation, say there 
was no charge at all levied for lane 1. If we retained the first-best charge for lane 2, the 
gap between the two charges would be too great — there would be too little traffic in 
lane 2 and too much in lane 1. So the second-best optimal change for lane 2 lies below 
the first-best optimal charge. 
 
The mathematical appendix also derives the ‘third-best’ optimal charge where a class of 
vehicles is allowed to travel in the fast lane without charge. The fast lane would be 
classed as a HOT lane if the select class of vehicles were HOVs. It has been assumed 
throughout this paper that there is no substitutability between single- and high-occupancy 
vehicles. The extent to which for HOV lanes are effective at encouraging ride-sharing is 
debated. Fielding and Klein (1993) argued that ‘Current HOV lanes are not very effective 
at reducing traffic; 43 per cent of car-poolers are members of the same household’. On 
the other hand, Gard reported a HOV lane scheme in San Francisco increasing carpool 
ridership by 65 per cent. (quoted in BTRE 2002). Extension of our model to allow for inter-
relationships between demand curves for some classes of vehicles is a development to 
consider in the future. It would not change the result for first-best optimal lane pricing and 
would most likely have only limited effect on the second-best pricing results. The welfare 
results for HOV and HOT lanes, however, are likely to be more favourable. 
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Optimal charge – fast lane 

Optimal congestion charge 
 – undifferentiated lanes 

Optimal charge – slow lane 

 
Figure 2 Relative sizes of optimal lane charges 
 
The formula for the optimal HOT lane charge is similar to the second-best optimal charge 
in that the marginal welfare losses between the lanes are equated, allowing for secondary 
effects associated with a vehicle switching lanes. There is an additional secondary effect 
to take into account in the optimal HOT lane case. If the charge is decreased, causing 
traffic to shift from the slow to the fast lane, there is crowding out of HOV vehicles to 
consider as well as for the toll-paying vehicles in the fast lane. The HOV vehicles have 
their own marginal welfare loss distinct from the toll-paying vehicles in the fast lane. 
 
4 Relationship to prior literature 
Lane differentiation has been attracting increasing attention in the academic economic 
literature over the last several years. As the problem is mathematically complex, the 
approach taken is invariably to develop a mathematical model, make assumptions about 
orders of magnitude, and to undertake quantitative experiments with the model to compare 
the economic efficiency, revenue and other outcomes of different assumptions and policies. 
The present paper follows this same approach. 
 
Often the models apply to two alternative routes but they are effectively the same as if the 
routes were different lanes on the same road. 
 
Many of the papers assume homogeneous vehicles in terms of value of time. As Verhoef and 
Small (1999) observe, such an approach leads to under-estimation of the welfare gains from 
differential lane pricing. Small and Yan (2001) assuming homogeneity within lanes, but 
heterogeneity between lanes, found that the efficiency gains from lane pricing, whether first-
best or second-best, increases with the assumed level of heterogeneity between lanes. 
Some models, such as Yang and Huang (1999), focus on the decision about whether or not 
to rideshare, but assume a single value of time. 
 
The present paper adds value in that it: 

• emphasises the distribution of road users across values of time, including deriving 
such a distribution in an original way; 

• derives mathematical expressions for first-best and second-best optimal lane prices 
and explains the rationales behind them; 

• develops an approach to modelling and evaluating lane differentiation proposals; 

0 
Slow lane    Fast lane 

Second-best optimal 
charge for fast lane with 
zero charge for the slow 
lane 

 
28th Australasian Transport Research Forum Page 5 



 

• provides some new insights into lane differentiation policies and discusses the policy 
implications. 

 
5 Spreadsheet experiments 
 
5.1 Model description 
In order to gain further insights into lane pricing, spreadsheet experiments were undertaken 
using values for costs and quantities set at realistic levels. Finding equilibrium prices and 
quantities involves solving simultaneous equations. This was done using Excel’s circular 
reference facility, which finds solutions through iteration. 
 
The assumptions in table 1 were made in developing the demand system. Proportions of 
buses and cars with four or more occupants were assumed to be too small to warrant 
inclusion. 
 
Table 1 Assumed values of time and coefficients of variation 

People Freight Vehicles Total
$/h (%) $/h (%) $/h (%) $/h (%)

Private car 1 person 9.23 (30) 0 8 (20) 17.23 (18.6)
Private car 2 people 9.23 (30) 0 8 (20) 26.46 (16.0)
Private car 3 people 9.23 (30) 0 8 (20) 35.69 (14.2)
Business car 1 person 29.52 (20) 0 8 (20) 37.52 (16.3)
Business car 2 people 29.52 (20) 0 8 (20) 67.04 (12.7)
Business car 3 people 29.52 (20) 0 8 (20) 96.56 (10.7)
Rigid truck 19.69 (5) 9.31 (30) 34 (30) 63 (16.9)
Articulated truck 20.94 (5) 27.57 (30) 40 (30) 88.51 (16.5)

Notes: Coefficients of variation are shown in brackets. Costs are resource costs, that is, they exclude taxes on 
non-labour inputs such as GST and fuel excise. Prices paid by road users were assumed to equal resource costs. 
Distinguishing between resource and financial costs was considered to be an unnecessary refinement. 
Coefficients of variation for the totals were obtained by summing variances of the components of total cost. 
Sources: Austroads (2004) for values of time. BTRE Road Infrastructure Assessment Model with parameter 
values from Austroads (2004) for vehicle operating costs. Coefficients of variation are the author’s assumptions. 
 
The values of time and weighted average vehicle occupancy rates (see table 2) are those 
currently recommended by Austroads (2004) for urban traffic for undertaking cost–benefit 
analyses of road improvement projects. The vehicle occupancy rates appear high, but it was 
decided to keep with Austroads values. 
 
Table 2 Assumed vehicle occupancy rates and proportions 

Private 
car 1 

Private 
car 2 

Private 
car 3  

Weighted 
average 

Business 
car 1 

Business 
car 2 

Business 
car 3 

Weighted 
average 

70% 20% 10% 1.4 people 50% 40% 10% 1.6 people 
Source: Austroads (2004) for the 1.4 and 1.6 vehicle occupancy rates. Proportions are the author’s assumptions 
but set to be consistent with the Austroads vehicle occupancy rates. 
 
The assumed vehicle mix was 90% cars, 5% rigid trucks and 5% articulated trucks. The 
assumed split of cars between private and business travel was 78:22 was based on Survey 
of Motor Vehicle Usage statistics. To make trucks comparable with cars in terms of use of 
road space, truck numbers had to be converted into passenger car units (PCUs). A rigid 
truck was assumed to account for 1.5 PCUs and an articulated truck, 3.0 PCUs. The 
resultant PCU split and values of time per PCU are shown in table 3. 
 
It was assumed that values of time are normally distributed around the means shown in 
table 3 with the coefficients of variation from table 1. The distribution so-obtained was 
assumed to apply in the situation without congestion pricing. The tiny proportions of PCUs 
with values of time below $6 per hour and above $120 per hour were aggregated. The 
distributions of traffic in PCUs per hour, with and without congestion pricing, are shown in 
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figure 3 with the traffic split into one-cent-wide bins for values of time. The distribution has 
two peaks caused by the dominance of private cars with one and two occupants, and has a 
long tail to the right. 
 
Table 3 Assumed PCU split and mean values of time per PCU 

 

Private 
car 1 

person 

Private 
car 2 

people 

Private 
car 3 

people 

Busines
s car 1 
person 

Busines
s car 2 
people 

Busines
s car 3 
people 

Rigid 
truck 

Artic-
ulated 
truck 

Percent of PCUs 31.20 24.96 6.24 12.32 3.52 1.76 6.67 13.33 
Value of time 
($/PCU/h) 17.23 26.46 35.69 37.52 67.04 96.56 42.00 29.50 

 
 

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140

Value of time ($/PCU/h)

P
CU

s 
pe

r h
ou

r i
n 

on
e-

ce
nt

-w
id

e 
bi

ns

 
Figure 3 Distribution of PCUs across values of time without (dark curve) and with 
optimal congestion pricing (light curve) 
 
To make the problem tractable for a spreadsheet, it was necessary treat the demand surface 
as a set of discrete demand curves. The market was segmented into 11,401 demand curves 
for values of time at 1 cent intervals from $6 to $120. Ideally, the charge would be set 
exogenously and the split of traffic between the two lanes derived therefrom. However, the 
discrete nature of the demand surface meant that the split of demand curves between the 
two lanes had to be set manually for each spreadsheet experiment involving lane 
differentiation by price. The implied charge was then calculated. The large number of 
demand curves was necessary to give the model the required level of sensitivity.  
 
A constant-elasticity form of demand curve was was assumed — p=aq-0.8 where p is the total 
price paid by a road user consisting of the cost incurred plus charge paid, q is quantity, a, a 
constant, and –0.8 the elasticity. In the model with no congestion pricing, the a’s were 
adjusted to obtain the desired frequency distribution of quantities with differing values of 
time. 
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The curve for time to traverse the length of road as a function of quantity was assumed to be 
( ) 3.0

0 VCR1tt −=  where t0 is the time taken travelling at free speed (absence of 
interference from other vehicles) and VCR is volume–capacity ratio. For the purposes of our 
spreadsheets, the length of road was taken to be one kilometre, the free speed 100 km/h 
and the lane-capacity 2400 PCUs per hour. The volume–capacity ratio (VCR) in the absence 
of congestion pricing was assumed to be 0.72. At higher ratios, Excel had increasing 
difficulty converging to solutions, especially with lane differentiation. The road was assumed 
to consist of three lanes per carriageway. Our model deals with one carriageway only. Thus, 
total capacity for a carriageway was 7200 PCUs per hour, total actual traffic was 5184 PCUs 
per hour, and speed 68.3 km/h. 
 
Results of the experiments are summarised in table 4. 
 
5.2 Optimal congestion pricing without lane differentiation 
The optimal congestion price without lane differentiation was 16.4 cents, resulting in a 
reduction in VCR to 0.58 and an increase in speed to 77.2 km/h. Figure 3 shows that 
congestion pricing has a larger proportional impact on traffic with lower values of time. It has 
reduced the peak associated with single-occupant private cars to around the same level as 
that associated with dual-occupancy private cars. The average value of time has risen from 
$29.63 to $31.03. The reason is evident in figure 4, which shows the distribution of increases 
in total private generalised costs for PCUs (including charges) over the situation where there 
is no road charging (see the ‘cong p’ line for optimal congestion pricing without lane 
differentiation). The increase is smaller for traffic with higher values of time because the 
increase in speed is worth more to higher value-of-time traffic. Traffic with values of time 
above $96.61/PCU/h experience falls in generalised costs because the benefit of the time 
savings to them exceeds the cost imposed by the congestion charge. 
 
Table 4 Policy options compared 

 No 
pricing 

Optimal 
congestion 

pricing 

Optimal 
lane pricing 

Second- 
best optimal 
lane pricing 

HOV lane 
(3+) 

Optimal 
HOT lane 

pricing (3+) 
Charge 
(cents/km) 0.0 16.5 15.3, 18.6  0.0, 8.1 0.0, 0.0 0.0, 7.6 

VCR 0.72 0.58 0.62, 0.51 0.76, 0.58 0.85, 0.22 0.76, 0.60 

Speed (km/h) 68.3 77.2 75.0, 80.1 65.2, 77.1 56.3, 92.8 65.3, 76.0 

Lane split (ratio) 1: 1: 1 1: 1: 1 1.2: 1.2: 1 1.3: 1.3: 1 3.9: 3.9: 1 1.3: 1.3: 1 

Critical value of 
time (v*) ($/h) na na 34.56 34.06 na 35.13 

Average value 
of time ($/h) 29.63 31.03 23.68, 49.00 23.00, 47.93 27.94, 49.07 23.11, 47.27

PCU quantity 
increase (index) 0.0 -100.0 -97.8 -14.4 -54.8 -10.2 

Welfare 
increase (index) 0.0 100.0 106.8 32.6 -8429.4 -8223.0 

Revenue 
increase (index) 0.0 100.0 99.3 16.5 0.0 10.9 
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Figure 4 Increases in private generalised costs (including charges) over no charging 
case 
 
Optimal congestion pricing leads to a quantity decrease of 1028 PCUs/hr, a welfare increase 
of $162.93 /h and revenue of $684 /hr. These are used as the standards of comparison for 
reporting the impacts of lane differentiation. 
 
5.3 First-best optimal lane pricing 
As expected, first-best optimal lane pricing leads to prices, VCR’s and speeds on either side 
of the respective levels for optimal congestion pricing. There is a small increase in total traffic 
throughput and the welfare increase, at 6.8%, is small in comparison with optimal congestion 
pricing. This suggests that if optimal congestion pricing is feasible, there is not a great deal to 
be gained from adding the additional dimension of lane pricing. Indeed, given the margin for 
error in setting the optimum prices and the additional administrative costs, the modest 
welfare gains from optimal lane pricing compared to optimal congestion pricing could easily 
be negated. However, the same could be said about comparisons between congestion 
prices having differing degrees of variability with respect to time of day or location. 
 
The same spreadsheet experiments were performed for the no-pricing situation with VCR’s 
of 0.6 and 0.4. Although the gains from optimal congestion and lane pricing are smaller in 
absolute terms, as a percentage of the congestion pricing gain, the gain from optimal lane 
pricing is 11.2% for an initial VCR of 0.6, and 26.0% for an initial VCR of 0.4. At lower levels 
of congestion, the gains from congestion pricing are less compared with the no-pricing 
situation. However, the value of splitting the traffic stream tapers off more slowly as 
congestion falls. In the VCR of 0.4 case, the critical value of time is little changed ($34.39) 
and the reductions in the absolute differences between the speeds (86.4, 90.1 km/h) and 
VCRs (0.38, 0.29) between lanes are far from proportionate, suggesting that a significant 
amount of the gains from lane differentiation remain. The policy implication is that, in a road 
network where optimal congestion pricing is in place, gains from lane pricing may be more 
certain of being realised on moderately congested roads than on heavily congested roads. 
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Figure 4 shows that the impacts of optimal lane pricing on total private generalised costs of 
individual PCUs are not markedly different from with optimal congestion pricing without lane 
differentiation except for PCUs with high values of time. The kink in the curve occurs at the 
critical value of time. Traffic with the highest values of time in the slow lane and traffic with 
the lowest values of time in the fast lane do less well compared with congestion pricing. 
Traffic with the highest values of time benefit most. It is not surprising that a switch from one 
price–quality combination to two would disadvantage consumers in the middle and 
advantage consumers at the extremes. However, the loss to road users around the critical 
value of time compared with congestion pricing is practically negligible. 
 
5.4 Second-best optimal lane pricing 
When the charge for the slow lanes is constrained to zero, charging for use of the fast lane 
has more to offer. The VCR’s and speeds for the lanes lie on either side of those for the no-
pricing situation and the gaps between them are more pronounced than for optimal lane 
pricing. The welfare increase is 32.6% of the gain from optimal congestion pricing 
 
By way of comparison, Verhoef and Small (1999, p. 10) obtained a welfare gain of 22.9% for 
second-best optimal pricing on one of their parallel links (effectively, the fast lane) expressed 
as a percentage of the welfare gain from first-best optimal lane pricing compared with no 
pricing. The comparable percentage in our case is 30.6%. Parry (2002, p. 347), also 
assuming heterogenous vehicles with respect to value of time, obtained results ranging from 
3% to 33%, again expressed as percentages of the gain from first-best optimal lane pricing. 
The spread of values in Parry’s results arises from varying the demand elasticity, the degree 
of heterogeneity of road users, and the level of congestion. 
 
It is interesting to observe that for the three options shown in table 4 that involve differential 
lane pricing, the critical values of time, the lane splits, and average values of time in lanes 
are very similar. Many more experiments would be required, however, before one could 
generalise about this. 
 
As with optimal lane pricing, the gain from second-best optimal lane pricing as a percentage 
of the gain from optimal congestion pricing is greater on less congested roads. With a VCR 
of 0.6 in the no pricing situation, the welfare gain is 35.7% of that for congestion pricing, and 
for a VCR of 0.4, the welfare gain is 49.7%. Such a relationship is also evident in Parry’s 
(2002, p. 347) modelling results. 
 
Figure 4 shows the impact of second-best optimal lane pricing on total private generalised 
costs. With less revenue being raised, all road users are better off compared with optimal 
congestion and lane pricing. Traffic in the slow lane is disadvantaged relative to the no-
pricing situation because of the slower speed at which they are forced to travel. For traffic in 
the fast lane with values of time between the critical value and $47.90/PCU/h, the toll 
exceeds the benefit of the higher speed. Traffic in the fast lane with values of time above 
$47.90/PCU/h receives a net benefit. 
 
5.5 Lane differentiation through regulation 
In our spreadsheet model, if charging for road use were ruled out altogether, and the policy-
maker had the power to declare which classes of vehicles were permitted to use the fast 
lane, a number of feasible combinations exist. The feasibility of combinations is limited by 
assumptions that it is not possible to separate private and business cars, and that vehicle 
occupancy in the fast lane must be either two and above, or three and above. 
 
All feasible combinations were tested as well as a few non-feasible combinations. The best 
feasible combination on welfare grounds was to restrict the fast lane to HOVs with three 
people (HOV3+). Single- and dual-occupancy vehicles and rigid and articulated trucks must 
travel in the slow lanes. The welfare loss is 84 times the gain from congestion pricing. All 
other feasible combinations lead to even greater losses. Had it been possible to allow 
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business cars with two or more occupants to travel in the fast lane and not private cars, the 
welfare loss could have been reduced to seven times the gain from congestion pricing. 
 
The difference in VCRs and speeds between lanes is quite marked. Looking across the 
alternative combinations tested, a critical factor seems be the difference in weighted-average 
values of time between traffic in the slow and fast lanes. In the best feasible case, the 
average values of time are $28 and $49 per hour respectively. The most economically 
efficient case, where only business cars with two or more occupants use the fast lane, had 
average values of time of $27 and $77. A rule-of-thumb in deciding which groups to allow in 
the fast lane would be to seek the largest possible difference in the weighted average values 
of time between lanes, but without making the fast lane so exclusive that vehicles travel at 
close to free speed. This is contrary to the conventional wisdom that ensuring adequate 
utilisation of the fast lane is the prime determinant of economic efficiency — a point we return 
to in the next sub-section. 
 
Figure 5 shows 95% confidence intervals around the assumed average values of time for 
each vehicle type. Business cars with two or three occupants are quite distinct from the other 
types in terms of the ranges covered. It points to the reason why the most economically 
efficient regulatory split would be to grant them exclusive use of the fast lane. 
 

0 20 40 60 80 100 120 140 160 180 200

Articulated truck

Rigid truck

Business car 3

Business car 2

Business car 1

Private car 3

Private car 2

Private car 1

Value of time ($/PCU/h)

 
Figure 5 Confidence intervals at 95% around average values of time by vehicle type 
 
While a whole rigid or articulated truck has a relatively high value average value of time 
compared with a private car, using Austroads values of time for crew and freight, their values 
per PCU are not much different from the values for high-occupancy private cars. Hence, 
granting trucks access to the fast lane, under our assumptions, reduces total economic 
welfare. In our model, a truck-only lane leads to a welfare loss of 177 times the gain from 
introducing congestion pricing. 
 
An argument in favour of special treatment for trucks in lane allocation is that there are 
additional benefits from increased reliability that models, such as ours, do not recognise, and 
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that reliability benefits are of greater significance for freight than for passengers. Small and 
Yan (2001, pp. 311-2) justified omitting reliability benefits on the grounds that: ‘Value of time 
here proxies for value of reliability as well, since travel time and reliability are closely 
correlated in such corridors’. 
 
Permitting HOVs with two or three people (HOV2+) to travel in the fast lane in our model is 
not feasible because the number of HOVs is sufficiently large to make the speed in the HOV 
lane slower than the speed in the other lanes. Although this result is an artefact our 
assumptions, it is not uncommon in practice. Poole and Orski (1999. part 3B and 2000, 
pp 17–18), presenting arguments in favour of HOT lanes, observe that: ‘When HOV2+ lanes 
are converted to HOV3+ lanes because of severe congestion, the change usually results in 
unused capacity’. They cite the example of the Katy HOV lane in Houston, Texas where 
authorities have switched back and forth between HOV2+ and HOV3+ restrictions for the 
same lane because of ‘heavy congestion’ with the HOV2+ rule, and ‘excess capacity’ with 
the HOV3+ rule. 
 
Our modelling demonstrates that pricing solutions are likely to be vastly superior to 
regulatory solutions on economic welfare grounds. First, as figure 5 shows, there is 
considerable overlap between the value of time distributions for different vehicle classes. 
Under any traffic split determined by regulation, there will be vehicles with lower values of 
time per-PCU travelling in the fast lane than for vehicles in the slow lane. An immediate 
improvement in welfare would accrue if these vehicles could swap lanes. Second, regulatory 
solutions cannot distinguish between private and business cars or between trucks having 
different values of time. Lane pricing cleanly segregates the traffic stream at a single value of 
time, solving the problems of overlapping value of time distributions and limited ability to 
discriminate between vehicles. 
 
Third, the price difference between lanes can be finely adjusted to obtain the optimal split of 
traffic between lanes. With regulation, lane allocation can be undertaken only for large 
classes of vehicles. 
 
A fourth point in favour of lane allocation though pricing rather than through regulation is that 
part or all of the benefits from congestion pricing can be realised. Optimal first-best lane 
pricing yields the full benefits of congestion pricing plus the benefits of splitting the traffic 
stream by value of time. Second-best optimal lane pricing, whereby a toll is charged for the 
fast lane and not for the slow lane, is able to realise a portion of benefit of congestion pricing 
because the charge for the fast lane and the higher generalised cost in the slow lane deter 
some traffic for which the marginal social cost is less than willingness-to-pay. 
 
While welfare outcomes from lane differentiation through regulation must necessarily be 
inferior that from second-best optimal pricing, they need not be negative. A positive welfare 
gain is conceivable if there were a large class of vehicles with relatively high values of time 
and that class would be distinguished for reservation of the fast lane. 
 
5.6 HOT lanes 
 
In the final experiment, the HOV3+ lane was converted to a HOT lane. HOV3+ vehicles 
travel in the fast lane for free, while all other vehicles must pay a toll to use the fast lane. The 
toll was set at the optimal ‘third-best’ level. The optimal charge, VCRs, speeds, lane splits, 
critical and lane-average values of time, and quantity of PCUs all turn out to be similar to 
those for second-best optimal lane pricing. However, the welfare outcome is vastly different, 
with a loss of 82 times the gain from optimal congestion pricing. There is only a small 
improvement, in proportional terms, on the welfare outcome for the HOV2+ lane. 
 
Although, the switch from HOV to HOT lane has lead to more balanced lane utilitisation, the 
welfare gains have been largely offset by losses from slowing down the high-occupancy 
business cars in the fast lane from 93 to 76km/h. The HOT lane option is vastly inferior on 
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economic efficiency grounds to the second-best optimal lane pricing solution for two reasons. 
First, there are HOV3 private cars travelling in the fast lane with values of time below the 
critical value of $35.13 — 3.2% of total PCUs. Second, by reducing capacity in lane 2 for 
other vehicles, these HOV3 private cars drive up the critical value of time from $34.06 to 
$35.13, crowding out PCUs with values of time between $34.06 and $35.13 (2.0% of total 
PCUs) from the fast lane to the slow lane. 
 
Under different sets of assumptions, a switch from a HOV to HOT lane would undoubtedly be 
more beneficial on welfare grounds. Nevertheless, these results sound a warning about the 
much-vaunted benefits from HOT lanes over HOV lanes in terms of achieving better lane 
utilisation (for example, Dahlgren (2002, p. 241) and Poole and Orski (2000, p. 15)). If HOV 
lanes are able let the highest-value-of-time road users through quickly, they may not be quite 
the ‘inefficient use of scarce road space’ that is claimed (Poole and Orski 1999). The costs of 
underutilised road space are highly visible, unlike the benefits of faster travel for high-value-
of-time vehicles. 
 
6 Policy implications 
 
The model described in this paper gives greater emphasis to the heterogeneity of road users 
than most other models developed to examine lane differentiation. Consequently, it 
highlights the value of lane differentiation in separating out high-value-of-time traffic so it can 
travel at faster speeds. If properly applied, lane differentiation can result in a more efficient 
utilisation of road space. Lane differentiation becomes more worthwhile the greater the 
degree of diversity among road users in the value of time. 
 
Optimal congestion pricing can be improved upon by differential lane pricing, but the benefits 
may not be large compared with the overall benefit from introducing congestion pricing. The 
percentage benefit is greater on less congested roads. In terms of relative attractiveness, 
second-best optimal pricing compared with no pricing is a better proposition. 
 
Lane differentiation via regulation, such as HOV lanes and truck-only lanes, is vastly inferior 
on economic efficiency grounds to pure pricing solutions because regulation is a clumsy 
instrument for achieving segregation of high- and low-value-of-time traffic. It would require 
exceptional circumstances for a HOV or a truck-only lane to produce an economic welfare 
gain. 
 
Although a truck has a high value of time for the vehicle as a whole, on a per PCU basis, its 
value of time is comparable to that of a private car. From an economic efficiency viewpoint 
the value of truck-only lanes is therefore highly questionable. 
 
Conversion of under-utilised HOV lanes to HOT lanes may not be as beneficial on economic 
efficiency grounds as might be thought, because the gains from more balanced lane 
utilisation are, in part, offset by loses caused by slowing down high-occupancy vehicles in 
the fast lane having high values of time. 
 
In considering the economic efficiency of different forms of lane differentiation, it is important 
not only to take account of lane utilisation, but also the degree of segregation achieved of 
traffic with different values of time. The amount of overlap between the ranges of values of 
time between the slow and fast lanes is a major indicator of economic efficiency as well as 
levels of lane utilitisation. 
 
In developing lane differentiation policies, there are likely to be conflicts between economic 
efficiency and other objectives. Objectives such as encouraging ride-sharing and providing 
better access for public transport and freight are difficult to achieve without regulating lane 
usage. But from the point of view of the economic efficiency objective, pricing solutions 
usually perform much better than regulatory solutions. Where the economic efficiency 
objective conflicts with other objectives, it is highly desirable that decision makers be 
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informed of the costs of economic efficiency sacrificed to achieve other objectives. This 
information can be gleaned only by undertaking cost–benefit analyses of policies. 
 
Better evaluation of policies should also shed light on how well they achieve their stated 
objectives too. For example, BTRE (2002, p 33) took the view that ‘the environmental gains 
from HOV lanes are often negative’ as well as their efficiency gains. 
 
7 Further research and development 
 
There are some obvious lines of further research on this topic using the approach developed 
in this paper. 
 
The modelling work undertaken here could be extended to cover a much greater variety of 
assumptions about value of time distributions and other traffic characteristics and lane 
configurations. The work would benefit from better information about traffic compositions and 
distributions of values of time. 
 
A fuller consideration of HOV and HOT lane issues requires assumptions to be made about 
relationships between the demand functions for private cars with different occupancy rates, 
and possibly also between business cars with different occupancy rates. 
 
The Excel spreadsheet models used in the quantitative work for this paper have the 
advantage of a high level of transparency in their calculations. However, they were unable to 
handle scenarios with very high volume–capacity ratios. In searching for solutions, Excel 
tends to push road use beyond the VCR of one where solutions are non-existent. 
Constraining VCR to an upper limit can send the spreadsheet into an infinite loop. Alternative 
modelling software is available that can handle large simultaneous equation problems. 
 
In the long-term, a package might be developed to assist users to estimate the economic 
benefits and costs, revenues, traffic speeds, optimal prices, emissions levels and other 
variables to assist in evaluation of lane differentiation policies. It could develop a distribution 
of values of time based on data and assumptions inputted by the user along the lines shown 
in this paper. Allowance for time-of-day variation in demand would be desirable. Such a 
model could take account of the differences between private and social costs due to taxes 
and the non-linear relationship between vehicle operating costs and time. 
 
8 Mathematical appendix 
 
8.1 Optimal congestion price — simple case 
The simple case of optimal congestion pricing without lane differentiation using our notation 
and approach is presented here first to facilitate understanding of the more complex 
derivations below. 
 
q = quantity of traffic in passenger car units per hour 
t(q) = time taken as a function of traffic volume dt/dq ≥ 0 
c(t) = is average generalised cost per vehicle as a function of time taken 
MSC = marginal social cost 
p(q) = inverse demand curve 
π  = congestion charge or toll 
p = total price paid by a vehicle per passenger car unit π+= c  
w = economic welfare 
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Maximise economic welfare = willingness-to-pay – total social costs 
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If cost is assumed to be a linear function of time taken, that is, ktvc += , where v  is the 

weighted average value of time and k a constant, then v
dt
dc

=  and q
dq
dtv=π . Note that in 

practice, vehicle operating costs are not a linear function of time taken. However, it is a 
convenient approximation given that driver and passenger time costs outweigh vehicle 
operating costs. 
 
8.2 First-best optimal lane pricing 
All notation for the lane pricing derivations is the same as for the previous sub-section, 
except that subscript 1 indicates that the variable refers to lane 1, the slow lane, and 
subscript 2 indicates the variable refers to lane 2, the fast lane. 
 
v = value of time, a continuous variable ranging from zero to infinity 
c(t,v) = average generalised cost as a function of time taken and value of time. Here, value of 
time comprises both driver/passenger time and vehicle operating costs. 
The two lanes have different t(q) functions, t1(q1) and t2(q2), to allow for the fact that lane 1 
may represent two or more slow lanes and lane 2, one or more fast lanes. 
q(q,v) = demand curve for a given value of time 
p(p,v) = inverse demand curve at a given value of time 
v* = critical value of time, the value of the time at which the traffic splits between the slow 
and fast lanes; the highest value for the slow lane and the lowest for the fast lane 
c* and MSC* are the respective average and marginal social costs for traffic having a value 
of time v*. 
q* = q(p,v*) is the quantity of traffic having a value time v*. It would switch lanes as a result of 
a one dollar change in v*. 
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Maximise economic welfare = willingness-to-pay for lane 1 + willingness-to-pay for lane 2 – 
total social costs for lane 1 – total social costs for lane 2 
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For each individual value of v between zero and v*, 
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For each individual value of v between v* and infinity 
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If cost is a linear function of time: 
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Differentiating the welfare function with respect to v*: 
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With optimal congestion prices charged for both lanes: 
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If cost is a linear function of time: 22
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8.3 Second-best optimal charge for lane 2 with the charge for lane 1 fixed 

1π  = charge in lane 1, assumed to be fixed 

2π  = charge in lane 2, which we are seeking to optimise 
G = the gap between marginal social cost and average private cost for a lane. 
 
For any given v < v*: 
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From the derivation in the previous sub-section, for all values of v for lane 1: 
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The total price paid by a user of lane 1 having a given value of time is: 

( ) ( ) 1

*v

01 v,dvv,pqtcv,qp π+⎟
⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡= ∫ , which, when substituted into the previous expression gives: 

( ) ( ) ( )
1

11

*v

0 11

1
1 q

wGdvv,pq
v,qt

c
dq
dt

v,pq
w

∂
∂

=−π=
∂
∂

−π=
∂
∂

∫ , since the charge and the gap are the 
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Consider economic welfare be a function of the quantities of PCUs in the two lanes: 

. There is no need to include v* because, with the charge for lane 1 fixed, for 
each value of  there a unique pair of lane quantities and a unique value for v*. 
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This expression is easier to explain after rearranging it thus: 
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With first-best optimal pricing,  and 11 G=π 22 G=π , so both sides of the expression equal 
zero. In the second-best situation, 1π  is exogenously set at some level — usually zero. 

 is the welfare gain that results from an additional vehicle joining the traffic stream in 
lane 1. It is amount by which the price paid (marginal willingness-to-pay) exceeds marginal 
social cost. With ,  is negative indicating that an additional vehicle generates a 
welfare loss. Likewise,  is the welfare gain (loss, if negative) that results from an 
additional vehicle joining the traffic stream in lane 2. 

11 G−π

11 G<π 11 G−π

22 G−π

 

The terms 
*dv

dq1  and 
*dv

dq2  represent the full effects on the quantities of traffic in the 

respective lanes arising from a one dollar increase in v*. Since traffic shifts from lane 2 to 

lane 1, 0
*dv

dq1 >  and 
*dv

dq2 <0. Hence 11 G<π  will cause 22 G<π . The second-best optimal 

charge for lane 2 is set such that if the vehicle with value to time v* changes lanes, the 
saving in deadweight loss to society in the lane it leaves is the same as the additional 
deadweight loss imposed in the lane it enters. Hence economic welfare cannot be improved 
by altering the traffic split. The deadweight losses are calculated taking account of all the 
secondary impacts caused by the changes in the charge itself and in the speeds for all other 
traffic. 
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The nature of these secondary impacts is explored further in the remainder of this sub-

section in the course of deriving formulas for 
*dv

dq1  and 
*dv

dq2 . To simplify the analysis, it is 

assumed that road user costs are a linear function of time taken. 
 
A one dollar change in v* causes q* PCUs to switch lanes. Shifting of q* PCUs into lane 1 
has two effects. First, q1 is increased by q*. Second, with additional vehicles in the lane, 
VCR rises, causing time and costs to rise. The equilibrium points move up all the demand 
curves for traffic in lane 1 leading to a reduction in traffic. In other words, the additional q* 
PCUs crowd out some of the existing vehicles. The net increase in q1 is therefore somewhat 
less than q*. 
 
In the basic micro-economic model of a downward-sloping demand curve intersecting an 
upward-sloping supply curve to provide an equilibrium, a leftward shift of the supply curve of 

q* units, would result in a change in the equilibrium quantity of approximately 
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where  is the slope of the demand curve and and 0d <′ 0s >′ , the slope of the supply curve. 
The change in the equilibrium quantity has the same sign as q*, but is of a smaller size 
because of the increase in price. 
 
Combining the two effects: 
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 where 
1

1
1 dq

dt
t =′  and ( )

∫=
*v

01 dv
dp

v,pdqvR . 

 
A shift of q* PCUs out of lane 2 as a result of a one dollar increase in v* has three effects on 
the traffic in lane 2. First, there is the loss of q* PCUs. Second, the reduction in vehicles in 
the lane causes VCR, time and costs to fall, inducing some extra traffic. These two effects 
are the mirror images of the two effects in lane 1 and are estimated in the same way. A 
negative sign must proceed q* and the traffic-inducement effect is added. 
 
The third effect is the impact of the increase in 2π  raising prices, causing movement up the 
demand curves for the traffic remaining in lane 2. This third effect works against the traffic 
inducement effect. The perspective adopted here is that v* undergoes a one dollar increase. 
So we need to know the increase in 2π  associated with a one dollar increase in . Since 

, and  is fixed, 
*v

( 2112 tt*v −=π−π ) 1π ( ) ( ) *vdtdt*dvttd 21212 −+−=π , from which: 
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In the basic demand–supply model, an upward movement in the supply curve caused by 
increasing a tax  by  dollars causes the equilibrium quantity to change by: 2π 2πΔ
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Combining the three effects: 
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where, 
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We already have an expression for 
*dv

dq1 . Rearranging to combine the two occurrences of 

*dv
dq2  and simplifying:            ( )*vDRt1
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8.4 Third-best optimal charge for a HOT lane 
The subscript 3 is used to refer to the select group of vehicles allowed to travel in lane 2 for 
free. Hence, , the charge levied on the select group, is zero. It is assumed that traffic in 
lane 2 travels faster than in lane 1 so that the entire select group of vehicles will chose to 
travel in lane 2. The PCUs in the select untolled group of vehicles has to be removed from 
the function q(p,v). It is described by a separate function q

3π

3(p,v). The subscript 2 on the 
supply side refers to the cost curve for lane 2, and on the demand side, for tolled traffic using 
the fast lane. 
 
The gaps (G’s) between marginal social and average private costs for lane 2 need to be 
redefined because an increase in travel time caused by an additional PCU ( ) in lane 2 
increases costs for all vehicles in the lane, both tolled and untolled. 
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The definite integral for q3 is from zero to infinity because all vehicles in the select group of 
untolled vehicles travel in lane 2 regardless of value of time. 
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The formula for 
*dv

dq1  is unchanged from that derived the previous sub-section. 

 
The three effects of a change in v* on q2 are the same as for the previous sub-section, 
except that the demand system is more complex. The formula here was derived by solving a 
system of linear equations and differentiating to discover the effects on q2 and q3 of a 
rightward shift in the ( )2qt  curve and an increase in 2π . 
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The effects on q3 of the shift of vehicles from lane 2 to lane 1 and the altered charge for 
tolled traffic in lane 2 associated with a change in v* both occur via the effect on travelling 
time in lane 2. Hence the effect on q3 can be estimated simply as: 
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dq2  has been multiplied by –1 here because 
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dq2  is 

negative but, from the point of view of q3, there is an increase in available road capacity. 
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8.5 Verification of formulas 
All the formulas for economic welfare-maximising charges developed in this mathematical 
appendix were verified using the spreadsheet model, treating the definite integrals as 
summations over the values of time. Values of v* were varied manually to confirm that the 
optimal charges predicted by the formulas were indeed optimal, and that the formulas for 
derivatives of quantities with respect to v* gave correct results. 
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