

#### Australian Government

#### Department of Infrastructure, Transport, Regional Development and Local Government

Bureau of Infrastructure, Transport and Regional Economics

#### STATISTICAL REPORT



## <u>Maritime</u>

Australian maritime activity to 2029–30

Bureau of Infrastructure, Transport and Regional Economics

# Australian maritime activity to 2029–30

Statistical report

Department of Infrastructure, Transport, Regional Development and Local Government Canberra, Australia © Commonwealth of Australia, 2010

ISBN 978-1-921769-00-9

April 2010 / INFRASTRUCTURE09186

This publication is available in hard copy or PDF format from the Bureau of Infrastructure, Transport and Regional Economics website at www.bitre.gov.au—if you require part or all of this publication in a different format, please contact BITRE.

#### An appropriate citation for this report is:

Bureau of Infrastructure, Transport and Regional Economics (BITRE), 2010, Australian Maritime Activity to 2029–30, Canberra ACT.

#### Indemnity statement

The Bureau of Infrastructure, Transport and Regional Economics has taken due care in preparing the analyses contained in this report. However, noting that data used for the analyses have been provided by third parties, the Commonwealth gives no warranty to the accuracy, reliability, fitness for purpose, or otherwise of the information.

#### Published by

Bureau of Infrastructure, Transport and Regional Economics

GPO Box 501, Canberra ACT 2601, Australia Telephone (international) +61 2 6274 7210 Fax +61 2 6274 6816 Email: bitre@infrastructure.gov.au internet: http://www.bitre.gov.au

Desktop publishing by [INSERT NAME].

Printed by [INSERT PRINTING FIRM].

Typeset in Optima LT Std and Gill Sans MT [Mac].

Paper [INSERT PAPER TYPE].

## Foreword

This report presents forecasts of maritime activity in Australian ports to 2029–30. This includes imports and exports of containerised and non-containerised freight, coastal freight movements, temporary arrivals and departures of passengers by sea, and vessel activity. These update results previously published by the Bureau of Infrastructure, Transport and Regional Economics (BITRE) in Container and ship movements through Australian ports 2004–05 to 2024–25 (Working Paper 65).

The approach adopted for these forecasts is demand-based. Measures of income per capita for each of 12 trading regions are used in demand equations for Australian exports to those regions and for inbound seaborne passengers originating in those regions. Likewise, measures of income per capita for each Australian mainland state are used in demand equations for imports and coastal freight unloaded in each state's capital city port (Adelaide, Brisbane, Fremantle, Melbourne, and Sydney). Imports to other Australian ports and outbound coastal freight and seaborne passengers are assumed to be driven by income per capita for the whole of Australia.

Statistical models are used to estimate elasticities associated with these demand equations, and to forecast freight and passenger movements based on the expected growth in income for each region or state. This is done for each of the five major Australian container ports and for other Australian ports in aggregate. Based on forecasts of freight volumes and passenger numbers, estimates of future vessel activity are calculated.

This publication was prepared by Anatoli Lightfoot in the Infrastructure, Surface Transport and Road Safety Statistics section. Some of this work was originally published in a conference paper presented at the 32nd Australasian Transport Research Forum held in Auckland, New Zealand in September 2009. The author would like to acknowledge the contributions of BITRE colleagues Godfrey Lubulwa, Rob Bolin, Peter Kain, David Gargett, and Krishna Hamal, and comments provided by Port of Melbourne and Sydney Ports. Further acknowledgements go to Port of Brisbane, Flinders Ports, Fremantle Ports, Port of Melbourne, Sydney Ports, and Tasports for providing vital additional data on container movements at short notice.

For more information about this report or related BITRE publications please phone (02) 6274 7312 or email data.team@infrastructure.gov.au.

Gary Dolman Head of Bureau Bureau of Infrastructure, Transport and Regional Economics Canberra April 2010

## At a glance

### Containerised freight

- Australian containerised exports in 2007–08 totaled 1.50 million TEU.<sup>1</sup> This is forecast to increase to 1.74 million TEU in 2012–13, and to 6.32 million TEU by 2029–30.
- Australian containerised imports in 2007–08 totaled 2.46 million TEU. This is forecast to increase to 2.67 million TEU in 2012–13, and to 5.17 million TEU by 2029–30.
- In 2007–08, there were 362 000 TEU transported between Australian ports. This is forecast to increase to 415 000 TEU in 2012–13, and to 824 000 TEU by 2029–30.
- The estimated income elasticities for total outbound freight varied by port from 1.01 to 1.32.
- The estimated income elasticity for total inbound freight was 2.45.

### Non-containerised freight

- Australian non-containerised exports in 2007–08 totaled 685 million tonnes. This is forecast to increase to 754 million tonnes in 2012–13, and to 1.35 billion tonnes by 2029–30.
- Australian non-containerised imports in 2007–08 totaled 61.5 million tonnes. This is forecast to increase to 63.1 million tonnes in 2012–13, and to 89.7 million tonnes by 2029–30.
- In 2007–08 there were 54.6 million tonnes of non-containerised freight transported between Australian ports. This is forecast to increase to 65.1 million tonnes in 2012–13 and to 92.7 million tonnes by 2029–30.
- The estimated income elasticities for total outbound freight from capital city ports were not statistically significant.
- The estimated income elasticity for total outbound freight from regional ports was 0.66.
- The estimated income elasticity for total inbound freight was 0.69.

I Twenty-foot equivalent units, a measure which weights the number of containers by their physical size.

### Seaborne passengers

- Historically, the annual numbers of temporary arrivals and departures by sea have been highly variable.
- The number of temporary arrivals and departures by sea are forecast to increase from around 40 000 per annum to around 50 000 per annum in the period 2007–08 to 2029–30.
- The estimated income elasticities for inbound and outbound passengers were not statistically significant.

### Vessel activity

- In 2007–08, there were 27 434 calls to Australian ports of which 7161 were by containerships, 14 439 were by bulk carriers, 3633 were by general cargo vessels, and 2201 were by other vessels.
- Based on forecasts of containerised imports and exports, calls by containerships are expected to increase to 6910 in 2012–13, and to 11 200 by 2029–30.
- Based on forecasts of non-containerised imports and exports, calls by bulk carriers are expected to increase to 15 500 in 2012–13, and to 23 100 by 2029–30.
- Based on forecasts of non-containerised imports and exports, calls by general cargo vessels are expected to increase to 3710 in 2012–13, and to 4080 by 2029–30.

## Executive summary

The growth of Australia's imports and exports is forecast to slow in the period to 2010–11 due to the prevailing global economic conditions before returning to growth for the remainder of the forecast period to 2029–30. Containerised imports and exports and non-containerised imports are all predicted to decline by between 1.5 to 2.5 per cent during the first two years of forecasts, while non-containerised exports are expected to remain relatively flat for this period. A return to historical growth trends is expected to occur around 2011–12.



#### FES. I Indices of international trade

As shown in Figure ES.1, total containerised exports are predicted to fall slightly before returning to strong growth experienced historically. This is driven primarily by the expected recovery in South East Asian economies from 2011, and by the rapid expansion of the Chinese economy to 2014<sup>2</sup> and assumed continuing growth beyond that. China and South East Asian countries were between them the destination for 47.1 per cent of Australia's containerised exports by weight in 2007–08. This share is forecast to increase to 59.6 per cent in the ten years to 2017–18, during the same period in which total containerised exports are forecast to increase by 64.0 per cent. These forecasts rely heavily on assumptions regarding the future

Source: ABS (2009a), BITRE (2009), BITRE modelling.

economic growth of Australia's trading partners, particularly China, and whether this will have the same effect on demand for Australian exports as the historical data suggests.

Non-containerised exports show a slightly different pattern, remaining steady until 2010–11 when forecasts indicate a return to trend growth. China features prominently here, too, with forecasts showing average annual growth in non-containerised exports of 4.6 per cent per annum for the ten years to 2017–18, increasing China's share from 35.8 per cent to 43.6 per cent of Australian non-containerised exports. Japan and Korea are the other major importers of Australian non-containerised freight. Korea is forecast to maintain a share of approximately 11 per cent of non-containerised exports into the future, while exports to Japan remain relatively flat over this period in absolute terms resulting in Japan's share dropping from 34.7 per cent in 2007–08 to 28.3 per cent in 2017–18.

Model-based forecasts suggest that growth in the coastal container trade will return to historical growth patterns around 2011–12 after a period of near-zero growth (Figure ES.2). However, domestic container volumes have historically been relatively volatile, leading to substantial uncertainty in these forecasts. In contrast, coastal movement of non-containerised freight is expected to continue to grow steadily throughout the forecast period.



#### FES.2 Indices of coastal trade

Source: BITRE (2008), BITRE (2009), BITRE modelling.

The volatility of historical temporary passenger arrivals and departures make it difficult to forecast them with much precision. Additionally, non-economic factors strongly influence demand for international travel. These include major sporting events like the Olympic Games, international terrorist events, and global outbreaks of disease such as SARS or HINI. As such, the forecasts of steady long-term growth driven by increases in per capita income shown in Chapter 4 should be regarded as a baseline from which actual passenger movements will vary in response to changes in factors such as these.

Vessel activity is measured by the number of container, bulk, general cargo, passenger, and other vessels arriving at Australian ports (port calls). This is forecast to increase in line with Australian maritime activity, as shown in Figure ES.3.



#### FES.3 Calls to Australian ports by vessel type

Source: LMIU (2009), BITRE modelling.

## Contents

| Foreword          |                                         | iii |
|-------------------|-----------------------------------------|-----|
| At a glance       |                                         | V   |
| Executive summary |                                         | vii |
| Chapter I         | Introduction                            | I   |
| Chapter 2         | Containerised freight                   | 3   |
|                   | Model output                            | 3   |
|                   | Forecast overview                       | 4   |
|                   | Containerised exports                   | 6   |
|                   | Empty containers                        | 9   |
| Chapter 3         | Non-containerised freight               |     |
|                   | Model output                            |     |
|                   | Forecast overview                       | 12  |
|                   | Non-containerised exports               | 13  |
|                   | Non-containerised imports               | 14  |
| Chapter 4         | Seaborne passengers                     | 17  |
|                   | Model output                            | 17  |
|                   | Forecasts                               | 18  |
| Chapter 5         | Vessel activity                         | 21  |
| Appendix A        | Methodology                             | 23  |
|                   | Input data                              | 24  |
|                   | Model methodology                       | 27  |
|                   | Model selection                         | 28  |
|                   | Technical details                       | 29  |
| Appendix B        | Destination regions as at November 2009 | 31  |
| Appendix C        | Tabulated forecasts                     | 35  |
| References        |                                         | 45  |
|                   |                                         |     |

## Tables

| TI.I | Overview of statistical models                           |    |
|------|----------------------------------------------------------|----|
| T2.I | Containerised model output, summary                      | 4  |
| Т3.1 | Non-containerised model output, summary                  | 12 |
| T4.I | Passenger model output, summary                          | 17 |
| TA.I | Goodness-of-fit statistics                               | 24 |
| TC.I | Containerised exports by port of origin                  | 35 |
| TC.2 | Containerised imports by port of destination             | 36 |
| TC.3 | Coastal container movements by port of destination       | 37 |
| TC.4 | Total container throughput by port                       | 38 |
| TC.5 | Non-containerised exports by port of origin              | 39 |
| TC.6 | Non-containerised imports by port of destination         | 40 |
| TC.7 | Coastal non-containerised freight by port of destination | 41 |
| TC.8 | Temporary arrivals and departures by sea                 | 42 |
| ТС.9 | Vessel activity at Australian ports                      | 43 |

## **Figures**

| FES.I | Indices of international trade                                              | vii  |
|-------|-----------------------------------------------------------------------------|------|
| FES.2 | Indices of coastal trade                                                    | viii |
| FES.3 | Calls to Australian ports by vessel type                                    | ix   |
| F2.1  | Australia's containerised trade, summary                                    | 5    |
| F2.2  | Australia's containerised trade, growth rates                               | 6    |
| F2.3  | Australia's containerised exports by destination region, selected years     | 7    |
| F2.4  | Australia's containerised exports by port of origin                         | 7    |
| F2.5  | Australia's containerised imports by port of destination                    | 8    |
| F2.6  | Australia's coastal container movements by port of destination              | 9    |
| F2.7  | Total container throughput by Australian port                               | 10   |
| F3.1  | Australia's non-containerised trade, growth rates                           | 13   |
| F3.2  | Australia's non-containerised exports by destination region, selected years | 14   |
| F3.3  | Australia's non-containerised imports by port of destination                | 15   |
| F4.1  | Australia's temporary arrivals and departures by sea, summary               | 18   |
| F4.2  | Australia's temporary arrivals by sea from selected regions                 | 19   |
| F5.1  | Calls to Australian ports by vessel type                                    | 21   |

## CHAPTER I Introduction

The maritime industry is of vital importance to the Australian economy. As an island nation Australia depends on maritime freight to bring in imported goods and to export Australian goods to foreign markets. In the 2007–08 financial year, over 70 per cent of imports and 80 per cent of exports by value were transported by sea, representing a combined value of over \$311 billion.<sup>3</sup> In that year there were over 27 000 visits by ships to Australian ports.

This report presents forecasts of Australian exports and imports of containerised and non-containerised freight, coastal freight movements, temporary arrivals and departures of passengers by sea, and vessel movements. The general approach uses per capita real GDP or real final demand as predictors in demand equations for per capita import and export volumes, coastal freight volumes, and inbound and outbound seaborne passengers.

| Model                              | Dependant variable                                             | Independent variable                                             | Number of<br>observations<br>used | Data grouped and analysed by                              |
|------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------|
| Outbound containerised             | Log of exports (TEU) per capita of destination region          | Log of real gross product<br>per capita of destination<br>region | 1013                              | Financial year, Australian<br>port, trading region        |
| Inbound<br>containerised           | Log of imports (TEU) per capita of destination state           | Log of real final demand<br>per capita of destination<br>state   | 156                               | Financial year, Australian<br>port, coastal/international |
| Outbound<br>non-<br>containerised  | Log of exports (tonnes)<br>per capita of destination<br>region | Log of real gross product<br>per capita of destination<br>region | 1012                              | Financial year, Australian<br>port, trading region        |
| Inbound non-<br>containerised      | Log of imports (tonnes)<br>per capita of destination<br>state  | Log of real final demand<br>per capita of destination<br>state   | 156                               | Financial year, Australian<br>port, coastal/international |
| Outbound<br>seaborne<br>passengers | Log of outbound<br>passengers per capita of<br>origin state    | Log of real final demand per capita of origin state              | 18                                | Financial year                                            |
| Inbound<br>seaborne<br>passengers  | Log of inbound passengers per capita of origin region          | Log of real gross product per capita of origin region            | 211                               | Financial year, trading region                            |

#### TI.I Overview of statistical models

Four statistical models were used to estimate elasticities and produce forecasts of maritime freight, one for each of outbound containerised, inbound containerised, outbound non-containerised and inbound non-containerised freight. Two models were used for seaborne passengers; one for inbound passengers and one for outbound passengers. Empty container movements and vessel activity were estimated using other methods based on the output of the statistical models.

Table 1.1 summarises the key features of each of the statistical models. All of the models use real gross domestic product (GDP) per capita or real final demand per capita as the primary predictor for freight volumes and passenger numbers. Further details on the models can be found in the relevant chapters and in Appendix A.

This work is intended to provide an indication of possible future maritime industry activity in Australia, assuming unconstrained supply and given certain assumptions about future demand. Tables of detailed forecasts are provided in Appendix C. Electronic copies of these tables are available on the BITRE website at www.bitre.gov.au. More detailed information on any aspect of this paper can be obtained by contacting BITRE.

## CHAPTER 2 Containerised freight

The container trade in Australia is concentrated around the five mainland capital city ports: Adelaide, Brisbane, Fremantle, Melbourne, and Sydney. Around 90 per cent of total container imports and exports were handled at one of these ports in 2007–08, and between them they were the origin of over 70 per cent of the containers shipped domestically in that year.<sup>4</sup>

Inbound and outbound full containers are modelled separately. Demand for inbound containers to each mainland capital city port is assumed to be driven by real final demand per capita for the state in which the port is located (e.g. NSW real final demand drives growth in Sydney's inbound container numbers), while Australian real final demand per capita drives inbound freight to other Australian ports. Demand for outbound containerised freight is assumed to be driven by real Gross Regional Product (GRP) per capita<sup>5</sup> in each of thirteen destination regions. Australia is included as one of the destination regions in order to model outbound coastal freight. Further information on the data and models is provided in Appendix A.

### Model output

The outbound model estimates separate elasticities with respect to per capita GRP of the destination region for each of the five mainland capital city ports and another for the aggregation of all other Australian ports. In contrast, the inbound model estimates a single elasticity with respect to state or Australian final demand per capita. Estimated movements of empty containers are calculated from the model-based forecasts for full containers, using a methodology based on assumptions about the relationship between full and empty container movements.<sup>6</sup>

Table 2.1 summarises elasticity estimates obtained from both containerised freight models. As shown, the elasticities for each port in the exports model vary from 1.02 for Adelaide to 1.33 for Melbourne. The estimates are all significantly different from zero, clearly demonstrating the relationship between GRP and exported containers. When tested as a group (using an F-test to compare nested models with and without the port terms) it was found that estimating different elasticities by port explained a significant amount of additional variation in export volumes compared to estimating a single export elasticity. This suggests that the additional terms should be included in the model. However, there is insufficient evidence to conclude that containerised exports from any of the ports are not unit elastic with respect to GRP.<sup>7</sup>

**<sup>4</sup>** ABS (2009a), BITRE (2009).

<sup>5</sup> GRP per capita is calculated for a region by dividing the sum of the GDP of all countries in that region by the sum of the populations of those countries. See Appendix B for the composition of the trading regions.

<sup>6</sup> UNESCAP (2001).

<sup>7</sup> Based on t-tests with  $H_0$ : elasticity = 1.

For the imports model, the additional terms required to estimate elasticities by port were included in preliminary models, producing elasticity estimates by port ranging from 2.14 for other ports to 2.57 for Melbourne. However, these terms were dropped from the final model. This was due to the similarity of the estimates for the five mainland capital ports (which ranged from 2.43 to 2.57), and also because including the terms caused convergence problems for the model-fitting algorithm. A t-test of the single import elasticity rejects the hypothesis that the elasticity equals one (t = 6.19), so it can be concluded that Australian imports are relatively elastic with respect to Australian state final demand per capita.

| Model/port           | Elasticity with respect to | Estimate S | tandard error | DF <sup>a</sup> | P-value <sup>b</sup> |
|----------------------|----------------------------|------------|---------------|-----------------|----------------------|
| Outbound Adelaide    | Gross Regional Product     | 1.0153     | 0.2307        | 994             | < 0.000              |
| Outbound Brisbane    | Gross Regional Product     | 1.1697     | 0.2350        | 994             | < 0.000              |
| Outbound Fremantle   | Gross Regional Product     | 1.1245     | 0.2303        | 994             | < 0.000              |
| Outbound Melbourne   | Gross Regional Product     | 1.3286     | 0.2324        | 994             | < 0.000              |
| Outbound Sydney      | Gross Regional Product     | 1.2521     | 0.2326        | 994             | < 0.000              |
| Outbound other ports | Gross Regional Product     | 1.0917     | 0.2349        | 994             | < 0.000              |
| Inbound all ports    | Domestic final demand      | 2.4463     | 0.2337        | 143             | < 0.0001             |

| T2.I | Containerised model output, sumr | nary |
|------|----------------------------------|------|
|------|----------------------------------|------|

Source: BITRE modelling.

Note: Selected model output shown. See Appendix A for details.

a Degrees of freedom, a function of the number of observations used to estimate the parameter

b For a t-test with  $H_0$ : elasticity = 0

The slight differences in elasticity estimates between the ports in the outbound model may be due to differences in the mix of commodities shipped from each. Demand for different types of goods can be expected to respond differently to changes in average income. For instance, demand for consumer items tends to be income elastic while demand for necessities such as food or fuel is relatively inelastic. This is also likely to be the reason for the much higher estimated elasticity for inbound containers than outbound: Consumer items represent a much larger proportion of Australian containerised imports than containerised exports. It follows that the elasticities will not necessarily remain constant if there are changes to the relative proportions of the various commodities shipped.

#### Forecast overview

Figures 2.1 and 2.2 show model-based forecasts of total containerised trade. Coastal freight figures are based on forecasts of inbound freight by port of destination, as inbound models use the more detailed Access Economics Australian final demand figures rather than IMF's Australian GDP figures as the predictor. Total inbound and outbound freight are both forecast to flatten during 2008–09 and 2009–10 before returning to growth in the following years. From 2010–11 to 2019–20 growth in imports and coastal freight are expected to closely follow the strong growth forecast in Australian final demand for this period.<sup>8</sup> Longer-term forecasts show growth rates for both imports and coastal freight stabilising at around 4 per cent per annum.

<sup>8</sup> Access Economics (2009).

Containerised exports are expected to flatten out in a similar pattern to containerised imports. The forecasts show a return to growth rates of 7 per cent per annum around 2014–15. This rate of growth is predicted to gradually increase at approximately 0.1 per cent per annum, finishing the forecast period at 8.8 per cent per annum. This is consistent with the increasing GDP growth rates predicted for Australia's trading partners: growth in global gross product per capita is expected to accelerate from 2.3 per cent per annum to 3.2 per cent per annum between 2014 and 2030.<sup>9</sup> Whether or not the levels of economic growth predicted will eventuate and whether they are sustainable over such a long period are matters for debate, but these forecasts are produced under the assumption that they will eventuate and that they are sustainable.

Historical coastal container movements appear relatively volatile when compared with imports and exports, as shown in Figure 2.2. Figure 2.2 also shows that although historical imports are much more stable than coastal freight, the pattern of maxima and minima are similar for these two series. This suggests that similar processes may be driving growth (or decline) in imports and coastal freight.



#### F2. I Australia's containerised trade, summary

Source: BITRE (2008), BITRE (2009), BITRE modelling.



#### F2.2 Australia's containerised trade, growth rates

### Containerised exports

Figure 2.3 shows the regional breakdown of Australian containerised exports. East Asia and South East Asia represent the destination for the majority of Australia's containerised exports, although substantial volumes are exported to all regions except South America. The majority of the growth forecast in the ten years to 2017–18 is in the East Asian market, corresponding to the expected rapid economic growth in China during this period.

Containerised exports to East Asia from the five mainland capital city ports and from other ports are all forecast to increase rapidly between 2007–08 and 2017–18. In contrast, containerised exports to South East Asia are predicted to remain relatively steady for the first two to three years of the forecasts for Brisbane, Melbourne, and Sydney, while exports to South East Asia from Adelaide and Fremantle are forecast to decline in the short term. The long-term predicted rate of export growth from 2010–11 onwards is also lower for South East Asia compared to East Asia.

The substantial growth in exports to East Asia is driven primarily by the high rate of GDP growth (approximately 10 per cent per annum) assumed for China during this period.<sup>10</sup> However, these results should be interpreted with caution as they are based on the assumption that China's future GDP growth will drive increases in containerised exports to China according to the same relationships observed in the historical data. The nature of these relationships is assumed to remain constant. As such, actual exports may differ from forecasts if the relationship between GDP and demand for imports changes in the future. It is also possible that the actual rate of growth of China's economy will differ from the assumed GDP growth that underpins the forecasts.

<sup>10</sup> IMF (2009), BITRE estimates.



F2.3 Australia's containerised exports by destination region, selected years



#### F2.4 Australia's containerised exports by port of origin

Source: ABS (2009a), BITRE (2009), BITRE modelling.

### **Containerised** imports

Sydney and Melbourne, Australia's two largest container ports, handled more than two-thirds of total containerised imports in 2007–08. They are expected to remain Australia's busiest ports into the future, despite the forecast flattening of Melbourne's imports and the short-term decline in imports to Sydney.

The breakdown of the forecasts of containerised imports by port is shown in Figure 2.5. As the inbound model estimates a single elasticity for all ports, the forecasts reflect predicted differences in future real final demand between the states.<sup>11</sup> However, the decline forecast for Sydney is exaggerated by above-trend imports recorded in 2006–07 and 2007–08. If these recent results represent a permanent departure from the historical trend rather than statistical noise then it is likely that the forecasts systematically underestimate future containerised imports to Sydney.



#### F2.5 Australia's containerised imports by port of destination

### Coastal freight

Both inbound and outbound container models incorporate coastal freight. This is done in the outbound model by including Australia as a destination region and treating coastal freight as 'exports' to Australia. In the inbound model, coastal inbound freight is modelled separately but identically to international imports. Figure 2.6 presents a ten-year forecast of coastal container movements by port of destination.

II Access Economics (2009).

Some ports, most notably Sydney, handle far more outbound coastal containers than inbound. However, due to a lack of consistent data on coastal container movements, and the fact that the movement of freight in general is driven by demand at destination rather than origin, it was not possible to produce reliable forecasts of coastal freight by port of origin.

As shown in Figure 2.6, regional ports are a substantial player in terms of containerised coastal freight. However, the vast majority of the other ports figures are attributable to ports in Northern Tasmania (Burnie, Bell Bay, and Devonport) and the Bass Strait trade with Melbourne. There is also a significant flow of coastal containers to Fremantle originating from the other mainland capitals evident in the historical data which explains the substantial numbers of containers destined for Fremantle in the forecasts.



#### F2.6 Australia's coastal container movements by port of destination

Source: BITRE (2009), BITRE modelling.

### **Empty containers**

The inclusion of empty container movements provides a measure of port activity which is useful for assessing capacity, particularly in terms of container terminal operations. Empty containers take time to load and unload, and require space for storage and transport. Of the 5.8 million TEU moved through the five mainland capital city ports in 2007–08, approximately one-quarter were empty containers.<sup>12</sup> Figure 2.7 shows total container movements for each port, including imports, exports, coastal movements of both full and empty containers.

As the numbers of empty containers imported and exported are not directly related to demand for goods, these estimates are not based directly on the statistical models. Rather, assumptions are made regarding the relationship between full and empty imports and exports, and the empty container movements are then estimated based on the full container forecasts.<sup>13</sup> The method used requires assuming that the net flow of containers into or out of a port by other modes (road and rail) is zero.

All of the mainland capital city ports except Adelaide currently handle more full containers in the inbound direction than outbound. This creates a need to re-position empty containers which are not required for outbound goods. As a result, total container movements at these ports are sensitive to changes in the number of full containers in the inbound direction only, while changes to full outbound container numbers tend to be absorbed by corresponding changes to empty outbound containers. The reverse is true for Adelaide, where in recent years outbound containers have exceeded inbound.



#### F2.7 Total container throughput by Australian port

Source: BITRE (2009), BITRE modelling. Note: Includes empty containers.

**<sup>13</sup>** UNESCAP (2001).

## CHAPTER 3 Non-containerised freight

Much of Australia's non-containerised trade is handled through regional ports. This is especially true of bulk exports. Approximately 247 million tonnes of coal and 314 million tonnes of iron ore were exported from regional ports in 2007–08, representing over 80 per cent by mass of all non-containerised exports in that year. At these ports, some of which are purpose-built, high volumes of specific bulk commodities are loaded or unloaded using specialised port infrastructure unsuitable for other types of cargo. In contrast, the mainland capital ports handle smaller quantities of a more diverse range of goods, and as a result are relatively small players in this market.

To illustrate this, consider the Australian ports with the highest total throughput in 2007–08 as measured in tonnes. These are: Dampier (125.7 million tonnes, of which 82.3 per cent was iron ore); Port Hedland (106.8 million tonnes, of which 95.9 per cent was iron ore); Hay Point/Dalrymple Bay (86.4 million tonnes, of which 84.2 per cent was coal); and Newcastle (82.5 million tonnes, of which 77.0 per cent was coal). In comparison, the capital city ports handle much lower volumes of non-containerised freight, and are much less specialised: Fremantle handled 10.1 million tonnes in 2007–08 of which 37.7 per cent was grain, Brisbane handled 9.3 million tonnes of which 44.9 per cent was coal, and the other mainland capital city ports had even lower total throughput.<sup>14</sup>

Inbound and outbound non-containerised freight are modelled separately, as for the container trade. Demand for non-containerised inbound freight to mainland capital city ports is assumed to be driven by real final demand per capita for the state in which the port is located, while Australian real final demand per capita drives inbound freight (imports and coastal) to other Australian ports. Demand for non-containerised outbound freight is assumed to be driven by real Gross Regional Product (GRP) per capita<sup>15</sup> in each of thirteen destination regions, of which Australia is one. Further information on the data and models is provided in Appendix A.

### Model output

As with the containerised models, the outbound non-containerised model estimates separate elasticities with respect to GRP for each of the five mainland capital city ports and another for the aggregation of all other Australian ports, and the inbound model estimates a single elasticity with respect to Australian real final demand by state for all Australian imports. Table 3.1 summarises elasticity estimates produced by the non-containerised models.

<sup>14</sup> BITRE (2009).

<sup>15</sup> GRP per capita is calculated for a region by dividing the sum of the GDP of all countries in that region by the sum of the populations of those countries. See Appendix B for the composition of the trading regions.

Elasticity estimates for non-containerised exports for the mainland capital city ports are all near zero (and not statistically significant), while the estimate for other ports of 0.66 is significant. This illustrates the differences between the five capital city ports and other ports. The relatively thin volumes of outbound non-containerised freight handled by capital city ports together with the volatility of historical data hides any relationship between outbound freight volumes and destination GRP for these ports. Consequently, forecasts of outbound freight for the five mainland capitals should be interpreted with caution. For this reason, and to maintain consistency with containerised freight forecasts shown in Chapter 2, future growth rates for total coastal non-containerised freight shown in Figure 3.1 are based on forecasts of coastal freight by destination from the inbound freight model.

| Model/port           | Elasticity with respect to | Estimate | Standard error | DF3 | P-value |
|----------------------|----------------------------|----------|----------------|-----|---------|
| Outbound Adelaide    | Gross Regional Product     | 0.0608   | 0.2339         | 993 | 0.7949  |
| Outbound Brisbane    | Gross Regional Product     | 0.1972   | 0.2317         | 993 | 0.3950  |
| Outbound Fremantle   | Gross Regional Product     | 0.2455   | 0.2329         | 993 | 0.2922  |
| Outbound Melbourne   | Gross Regional Product     | 0.1022   | 0.2320         | 993 | 0.6596  |
| Outbound Sydney      | Gross Regional Product     | -0.0365  | 0.2327         | 993 | 0.8756  |
| Outbound other ports | Gross Regional Product     | 0.6628   | 0.2292         | 993 | 0.0039  |
| Inbound all ports    | Domestic final demand      | 0.6907   | 0.2266         | 143 | 0.0027  |

#### T3.1 Non-containerised model output, summary

Source: BITRE modelling.

a Degrees of freedom, a function of the number of observations used to estimate the parameter

b For a t-test with  $H_0$ : elasticity = 0

Note: Selected model output shown. See Appendix A for details.

The terms required to estimate elasticities by port were initially included in the non-containerised imports model, producing estimates ranging from 0.64 to 0.74. As in the containerised case, these terms were dropped from the final model. In this case, the addition of the port-level elasticity estimates significantly reduced the overall fit of the model, despite the additional terms appearing significant in an F-test. The elasticity estimate for all ports is 0.69. Based on this estimate there is insufficient evidence to conclude that non-containerised exports are not unit elastic.

#### Forecast overview

Figure 3.1 shows forecast growth rates for non-containerised trade.Imports of non-containerised goods are expected to decline in 2008–09 and 2009–10 before returning to growth in the following years, while exports are expected to remain flat but not decline. The long-term growth rates forecast for non-containerised freight appear similar to the containerised freight forecasts, which is to be expected due to the use of the same GDP and final demand data for both sets of models. However, the annual growth rates at which the forecasts stabilise are different due to lower estimated elasticities for non-containerised freight. For both imports and coastal freight, long-term growth is predicted to stabilise at around 2 per cent per annum from 2020–21 to 2029–30. For exports the model predicts year-on-year growth of 3.2 per cent for 2012–13, gradually increasing to 3.8 per cent per annum by 2029–30, again reflecting the accelerating rate of global GDP growth assumed between 2014 and 2030.<sup>16</sup>

<sup>16</sup> IMF (2009), BITRE estimates.



#### F3.1 Australia's non-containerised trade, growth rates

#### Non-containerised exports

Figure 3.2 shows the regional breakdown of Australian non-containerised exports. They are dominated by exports to East Asia and Japan, which together accounted for 70.6 per cent of total non-containerised exports in 2007–08. Korea and Europe are the next biggest markets, representing 11.4 per cent and 6.1 per cent respectively in 2007–08, with most of the remaining 11.9 per cent accounted for by South and South East Asia. Like the container trade, the majority of the growth forecast over the initial ten-year period is in the East Asian market, corresponding to the expected rapid economic growth in China during this period. In contrast, growth in non-containerised exports to Japan is expected to remain largely flat between 2007–08 and 2017–18.



#### F3.2 Australia's non-containerised exports by destination region, selected years

### Non-containerised imports

Fuels represent the majority of Australia's non-containerised imports. Of 65.8 million tonnes of non-containerised imports in 2007–08, 53.7 per cent were petroleum products. Other commodities with a substantial of total imports by weight in that year were inorganic chemicals (7.2 per cent); metal ores and metal scrap (7.0 per cent); natural and manufactured gases (6.9 per cent); manufactured fertilisers (4.1 per cent); crude minerals, including crude fertilizers (3.9 per cent); other non-metallic manufactured minerals (3.9 per cent); iron and steel (3.0 per cent); and road vehicles (2.5 per cent). As all five of the mainland capital city ports except Adelaide have bulk liquids facilities for nearby oil refineries, a substantial proportion of non-containerised imports are handled through these ports as illustrated in Figure 3.3. This is in contrast to non-containerised exports where the capital city ports are minor players.

Brisbane, Fremantle, and other ports are all expected to continue to grow their non-containerised imports at a relatively steady rate into the future. The forecasts show imports declining for the first two to three years of the forecast period for Sydney and Melbourne before returning to the levels of growth seen in historical data by 2010–11. This decline appears to be due primarily to above trend imports in 2006–07 and 2007–08 for both of these ports. However, if these two years of higher than expected imports are due to a systemic change to Australian non-containerised imports that persists into the future then the predicted falls are unlikely to eventuate. A similar pattern is also visible in forecasts for Adelaide, although this does not appear to be due to recent above-trend imports but rather the relative

volatility of historical data. This is exacerbated by low volumes and possible issues with data quality due to the closure of the Port Stanvac refinery during the period, so these forecasts should be interpreted with some caution. Historical data for Melbourne and Sydney are also relatively volatile compared to Brisbane, Fremantle, and other ports.



#### F3.3 Australia's non-containerised imports by port of destination

Source: BITRE modelling.

## CHAPTER 4 Seaborne passengers

Seaborne passengers do not constitute a substantial proportion of total passenger movements to and from Australia. Nevertheless, there are a substantial numbers of passengers arriving and departing by sea each year. In 2008–09, over 28 000 temporary visitors to Australia arrived and more than 18 000 Australian residents departed by sea. This has impacts on the Australian maritime industry both in terms of port utilisation and maritime safety and security.

This chapter examines only short-term arrivals and departures of passengers requiring customs clearance. Permanent movements (migration) and long-term arrivals or departures, which are not driven by income in the same way as temporary movements, are excluded. Also excluded are movements of passengers between Australian ports, due to a lack of suitable data.

Inbound and outbound passenger movements are modelled separately in a similar fashion to imported and exported freight. Demand for inbound passenger movements is assumed to be driven by real Gross Regional Product per capita<sup>17</sup> in each of twelve freight destination regions (Australian domestic movements are not included). Demand for outbound passenger movements is assumed to be driven by Australian real final demand.

### Model output

As the source data used contains no information on which Australian port the passengers arrived at or departed from, port-level elasticity estimates are not possible. As such, a single elasticity is estimated for each of inbound and outbound passengers. These are presented in Table 4.1.

#### T4.1 Passenger model output, summary

| Model/port          | Elasticity with respect to | Estimate | Standard error | DF  | P-value <sup>a</sup> |
|---------------------|----------------------------|----------|----------------|-----|----------------------|
| Inbound passengers  | Gross Regional Product     | 0.4843   | 0.3446         | 198 | 0.1615               |
| Outbound passengers | Domestic final demand      | 1.5800   | 1.0152         | 16  | 0.1392               |

Source: BITRE modelling.

Note: Selected model output shown. See Appendix A for details.

a For a t-test with  $H_0$ : elasticity = 0

<sup>17</sup> GRP per capita is calculated for a region by dividing the sum of the GDP of all countries in that region by the sum of the populations of those countries. See Appendix B for the composition of the trading regions.

There is insufficient evidence to conclude that either elasticity is different from zero. The high standard error for the outbound passengers estimate is due to the small number of observations used. Due to the relative magnitude of the standard errors for both estimates, caution should be exercised when interpreting the results of these models.

#### Forecasts

As shown in Figures 4.1 and 4.2, temporary arrivals and departures by sea have exhibited significant volatility historically. This is due primarily to the fact that, in addition to economic factors, the international movement of passengers is sensitive to a large number of other factors such as intensity of tourism advertising campaigns, the global political climate, major sporting events such as the Olympic Games, terrorism, and many others. As these factors are extremely difficult to measure quantitatively they have not been used in the models. As such, the forecast steady long-term growth driven by increases in per capita income should be regarded as a baseline prediction from which actual passenger movements will vary in response to changes in these other variables.





Source: BITRE modelling.



#### F4.2 Australia's temporary arrivals by sea from selected regions

Source: BITRE modelling.

## CHAPTER 5 Vessel activity

The movement of freight and passengers by sea examined in the previous chapters is facilitated by the activity of vessels at ports. A simple but useful measure of vessel activity is the number of arrivals at port (port calls) during a period of time. The annual number of calls to Australian ports has grown steadily from just over 20 000 in 1996–97 to more than 27 000 in 2007–08. More than half of this increase is due to an increase in the number of calls by bulk vessels from 10 500 to nearly 15 000 over the same period.

Vessel activity is modelled differently to freight and passenger movements. It is not directly driven by economic factors but rather by the need to move freight and passengers. As such, simple models relating historical freight volumes and passenger numbers linearly to the number of port calls by different types of vessel were used to predict future vessel movements. Figure 5. I shows historical and forecast numbers of Australian port calls for four broad vessel categories.



#### F5.1 Calls to Australian ports by vessel type

Source: LMIU (2009), BITRE modelling.

The number of calls by passenger vessels was not significantly correlated with either the number of passenger movements or time. This may be partly due to the lack of availability of consistent data on passenger vessel movements. As such, the number of port calls by passenger vessels was assumed to remain constant throughout the forecast period.

Other vessels include tugs and supply ships, research vessels, and other types of vessel not involved in the transport of freight or passengers. Rather than being related to the movement of passengers or freight, activity by these vessels was assumed to continue to represent approximately 5 per cent of total port calls into the future. This assumption allows an estimate of total port calls for all vessel types to be calculated, but caution should be exercised in interpreting the other vessels prediction on its own. Another assumption is made about the future relative proportions of bulk and general cargo that makes up non-containerised cargo, in order to provide separate estimates for the activity of bulk carriers and general cargo vessels.

Average vessel size for freight vessels has changed noticeably during the period covered by the historical data, and this might be expected to invalidate a linear relationship between freight volume and vessel activity. However, attempting to account for the change in average size did not significantly improve the fit of the models. Furthermore, predictions of future changes in vessel size would be required to produce forecasts using a model that included it as an explanatory variable. As such, the simpler models were used. If vessel sizes continue to increase substantially in the future this may cause the forecasts, particularly those towards the end of the forecast period, to overestimate future vessel activity.

The  $R^2$  statistic for the regression of container movement on containership activity is 0.72, and that for the regression of non-container freight movement on bulk and general cargo vessel activity is 0.84.

## APPENDIX A Methodology

The general approach to modelling is based on the assumption that economic activity occurring in a geographic area can be used to explain demand for imported goods in that area, and demand for seaborne travel by passengers residing in that area. Thus, per capita GDP, aggregated by destination region, is used as the primary predictor for Australian freight bound for each region (including outbound coastal freight), and temporary arrivals of foreign passengers from corresponding origin regions. Similarly, per capita real final demand for each mainland state is used as the primary predictor for freight bound for the capital city port in that state, and for coastal cargo discharged at that port. Outbound passenger data was available only at the national level. As such, per capita real final demand for Australia as a whole was used as the primary predictor for inbound freight for ports other than the five mainland capital city ports (referred to collectively as 'other ports').

It is clear that in reality a vast multitude of factors influence maritime industry activity. However, explicitly including all of these factors in a statistical model is impractical. Instead, it is assumed that many of the underlying factors that drive maritime industry activity are the same as those that drive changes in GDP or final demand, and that there is sufficient similarity between these two sets of relationships that one can be used to predict the other. The extent to which this assumption holds true can be informally tested by examining various model diagnostics obtained from statistical software used to fit the models. The most straightforward of these is a simple numerical measure of model fit. For the models used this is the 'residual log-likelihood', which is a measure of the amount of variation in the response variable remaining after that which is explained by the model is removed.

The models used to forecast freight and passenger movements are linear mixed models<sup>18</sup>, an extension of standard linear regression models. These models estimate a number of parameters in addition to those reported in the previous chapters. These are of two general forms. The first is additional intercept terms for subsets of the data which define the bases which the models use when forecasting increases or decreases in the response variable using the estimated elasticities. The second is autoregressive covariance parameters designed to capture some of the effect of unmodelled time-dependent covariates. These are not reported because their interpretation is of little practical use. While the presence of these additional parameters affects the forecasts, it does not substantially change the interpretation of the reported elasticity estimates.

As shown in Table A.I, for all models except the outbound passengers model the inclusion of the additional autoregressive covariance parameters substantially improves the residual log-likelihood (a measure of model fit shown here in lower-is-better form). A likelihood ratio chi-square test on the outbound passenger model shows that the improvement from the addition of these parameters is marginal (P = 0.0881). It was decided to retain them despite this, but there are valid arguments for their removal. However, as there are no random effects in the outbound passenger model, doing this would reduce the outbound passenger model to a standard linear regression (see model methodology below).

The residual likelihood is a relative rather than an absolute measure because it is a function of both the data and the effects included in the model. As such, the statistics in Table A.I should only be used to compare different parameterisations of the same model (e.g. outbound container). It would not generally be useful to compare goodness-of-fit statistics between the outbound container and inbound container models, for instance. In this way it is somewhat different to the analogous measure for standard linear regression, R<sup>2</sup>.

| Model                  | Model including<br>fixed effects only | Model including fixed<br>and random effects | Full model including all covariance parameters |
|------------------------|---------------------------------------|---------------------------------------------|------------------------------------------------|
|                        | (–2 ti                                | mes residual log-likelihood)                |                                                |
| Outbound container     | 5511.9                                | 3152.4                                      | 1522.9                                         |
| Outbound non-container | 5379.0                                | 3702.5                                      | 2600.9                                         |
| Inbound container      | 619.6                                 | 146.5                                       | 33.1                                           |
| Inbound non-container  | 245.6                                 | 44.7                                        | 0.5                                            |
| Outbound passenger     | 20.4                                  | 20.4                                        | 17.5                                           |
| Inbound passenger      | 945.9                                 | 524.6                                       | 479.5                                          |

#### TA.I Goodness-of-fit statistics

Source: BITRE modelling.

### Input data

All models use the same basic set of variables: An independent variable (GRP or final demand), a dependant variable (freight or passenger numbers), and financial year. All freight data are disaggregated by Australian port (grouping non-mainland capital ports into 'other ports'), and exports are further disaggregated by destination region. Inbound passenger data are disaggregated only by origin region, and outbound passengers are not disaggregated at all. Nominal (unordered) categorical variables are used to represent Australian port and origin/ destination region, from which the model-fitting algorithm creates a number of indicator (zero/ one) variables. Financial year is also a categorical variable, but the models take advantage of the ordering of years to estimate time dependent parameters.

Freight, passenger, GRP, and final demand variables used are all per capita. This is intended to remove any time dependence related to changes in population. These variables are then log-transformed, as this produces much better fitting models and also allows coefficients to be interpreted as elasticities.

The datasets used to fit outbound freight models contain 78 observations per financial year: One observation per Australian port per destination region. Each of these observations contains GRP for that destination region for a particular financial year, and the freight movement figure for a particular Australian port to that destination region for that financial year.

The datasets used to fit inbound freight models contain one observation per financial year per Australian port, or six observations per financial year. Each observation contains the freight movement figure for a particular Australian port for that financial year, and a demand measure for the Australian state in which that port resides (or Australia as a whole for 'other ports'). This differs from the models used in Lubulwa et al (2009) in that no price measure is included.

The dataset used to fit the inbound passenger model contains one observation per financial year per origin region, or 12 observations per financial year. Each observation contains total inbound passengers from a particular origin region, and GRP for the corresponding destination region for that financial year. The outbound passenger model was fit using a dataset with a single observation per financial year, containing the total outbound passengers and Australian real final demand for that year. It is worth noting that the origin regions used for inbound passengers and the destination regions used for outbound freight and GRP differ slightly due to limitations of the passenger data.

#### Dependent variables

The natural logarithm of annual freight movement measured in twenty-foot equivalent units (TEU) or tonnes per capita of destination is the dependent (response) variable in each of the freight models presented in this paper. Passenger models use the natural logarithm of the number of passengers per capita of origin as the dependent variable.

Non-containerised international imports and exports are obtained from ABS (2009a). This is data originally collected by the Australian Customs Service. Quarterly historical imports and exports data from 1994 quarter 3 to 2008 quarter 2 are used, comprising approximately 15.8 million unit records. These are aggregated by financial year and by Australian port, and for exports also by destination region. Non-liner cargo is used as a proxy for non-containerised cargo, as there is no element in the source data that can be used to distinguish non-containerised from containerised cargo. This is an approximation. However, while there are measurable quantities of containerised cargo moved on non-liner vessels, these constitute a negligible proportion of total non-liner cargo by weight.

Australian coastal freight data used is as published in BITRE (2009b), and previous editions. This data is collected by BITRE directly from various port authorities. In tonnage terms, containerised and non-containerised cargo can be distinguished in this data.

Data used for total inbound and outbound TEU by port is obtained from Ports Australia (2009). From this total, outbound (loaded) coastal container figures provided by port authorities<sup>19</sup> are subtracted to obtain total international exported containers for each mainland capital city port. These total exports are then apportioned amongst the 12 trading regions for each year according to the proportion of the total combined weight of liner cargo shipped to each destination in that year, according to ABS (2009a). As sufficiently long time series of coastal TEU figures were not available for all five ports some older data were imputed. The coastal/ international split for other ports was calculated based on the ratio of the tonnage of coastal and international containerised freight.

Data used for inbound and outbound seaborne passenger numbers is from ABS (2009b). This is based on overseas arrivals and departures data published by ABS under catalogue number 3401.0. This data is not available by Australian port, so the passenger models are unable to forecast passenger movements by port. Additionally, there are some differences in the grouping of countries between sources which may cause passengers from some countries counted as Africa for GRP purposes to be included in Middle East passenger numbers instead. Likewise, some passengers from countries counted as North and Central American for GRP purposes may have been included in South America. As the countries for which this may have occurred contribute only small numbers to overall passenger movements for these regions this is not expected to have a major impact.

#### Independent variables

The independent (explanatory) variable used for the inbound freight and outbound passenger models is the natural logarithm of state real final demand per capita for Australia, from Access Economics (2009).

In the two outbound freight models and the inbound passenger model, countries are grouped into 12 destination regions.<sup>20</sup> For each of these, the population and real GDP of each of the countries in the region are used to calculate per capita Gross Regional Product (GRP). Historical and forecast foreign GDP and population are obtained from IMF (2009).

The sources used include forecasts of varying lengths; in order to be able to produce forecasts of the dependent variables to 2029–30 the existing forecasts of independent variables were projected beyond the end of their forecast periods based on an assumption of constant growth rates in subsequent years.

<sup>19</sup> Flinders Ports (2010), Fremantle Ports (2010), Port of Brisbane (2010), Port of Melboune (2010), Sydney Ports (2010), Tasports (2010).

<sup>20</sup> See Appendix B for details.

### Model methodology

The models use the linear mixed model methodology.<sup>21</sup> This generalisation of standard linear regression relaxes some of the assumptions and introduces additional parameters which allow the observed covariance between observations to be modelled explicitly. For example, total annual exports from Brisbane to South East Asia in a particular year are related to exports from Brisbane to South East Asia in other years in ways which are not accounted for by changes in South East Asia's GRP alone. The mixed model framework allows the covariance between all Brisbane–South East Asia observations to be explicitly estimated and incorporated into the forecasts, giving more robust results.

The general form of model equations for all the models, expressed using matrix notation, is:

$$y = X \beta + Z \gamma + \epsilon$$

where:

- **y** is a vector containing the response variable;
- **X** is a matrix whose columns contain the variables associated with the fixed-effects part of the model—an intercept term and the explanatory variables in the demand equation;
- β is a vector of fixed-effect parameters to be estimated—the intercept and explanatory variable coefficients (elasticities);
- **Z** is a matrix whose columns contain the variables associated with the random-effects part of the model;
- $\Upsilon$  is a vector of random-effect parameters to be estimated—coefficients of the random-effects variables in the Z matrix; and
- ε is a vector of random errors (residuals).

The  $\boldsymbol{\varepsilon}$  are assumed to be normally distributed with zero mean. However, the standard linear model constraints of constant variance and zero covariance are relaxed. Instead, the variance-covariance matrix of  $\boldsymbol{\varepsilon}$ , denoted by  $\mathbf{R}$ , is assumed to have a particular structure. The parameters associated with that structure are then estimated.

The structure chosen for **R** in the freight models was a homogeneous 1st order autoregressive structure with blocks by destination. In this structure pairs of residuals associated with observations in adjacent time periods have covariance  $\rho$ , and those for observations in non-adjacent time periods have covariance  $\rho^{1+n}$  where n is the number of intervening observations. Residuals for observations for different destinations have zero covariance. **R** therefore has two parameters to be estimated: The covariance parameter  $\rho$  and a variance parameter  $\sigma_{R}^{2}$ . In the exports models, a separate pair of parameters was estimated for each origin (the five mainland capital city ports and 'other ports'). In the imports models, a separate pair of parameters was estimated for international imports and for inbound coastal freight.

The structure chosen for  $\mathbf{R}$  in the seaborne passenger models was also a homogeneous 1st order autoregressive structure with blocks by passenger origin. For the outbound passenger model, this results in the residuals for all observations in the dataset being correlated, as all observations are treated as having the same origin.

<sup>21</sup> See Littell et al. (1996).

The random effects parameters  $\boldsymbol{\gamma}$  are also assumed to be normally distributed with mean zero. The values of  $\boldsymbol{\gamma}$  are estimated during model fitting along with the parameters associated with  $\boldsymbol{G}$ , the variance-covariance matrix of  $\boldsymbol{\gamma}$ . Like  $\boldsymbol{R}, \boldsymbol{G}$  is assumed to have a particular structure.

For all models except the outbound passenger model  $\mathbf{G} = \sigma_G^2 \mathbf{1}$  where  $\mathbf{1}$  is the identity matrix, and the single variance parameter  $\sigma_G^2$  is estimated. This structure does not allow for any covariance in  $\mathbf{\Upsilon}$ . The imports models estimate a separate set random effects parameters  $\mathbf{\Upsilon}$  for international imports and inbound coastal freight. This results in a separate variance parameter for each group, as with the  $\mathbf{R}$  matrix. In contrast, the exports models use a homogeneous structure for  $\mathbf{G}$  and estimates just one random-effects parameter per origin. As the outbound passenger model does not have a random effects component, there are no  $\mathbf{\Upsilon}$  or  $\mathbf{Z}$  in the model equation and hence no  $\mathbf{G}$  matrix.

The matrix equation above does not have a general analytical solution so parameters are estimated using an approximate iterative process. The technique used was REML (restricted maximum likelihood), as implemented by the MIXED procedure in SAS. This algorithm attempts to choose the set of parameters ( $\beta, \Upsilon, \sigma_{R'}^2 \sigma_{G'}^2$  and  $\rho$ ) which are most likely given the observed data ( $\Upsilon, X$ , and Z) and the constraints on  $\epsilon, \Upsilon, Z$  and G.

The general approach of UNESCAP (2001) was used to produce estimates of empty container movements, making use of the major directional movement for containers for each port. A consequence of this methodology is that growth in total container movements is closely tied to growth in full container movements in the major direction for each port, while changes in volumes moved in the minor direction have little effect on the total. In contrast to UNESCAP (2001), the proportion of major direction empty containers is set based on historical data and differs between ports, rather than assumed to be constant globally.

Estimates of future vessel activity are based on simple linear regression of historical freight vessel movements on historical and forecast freight movements, along with a number of assumptions regarding future non-freight vessel activity (including passenger vessels). No comprehensive analysis of historical vessel movements was undertaken. As such, the results should be treated as indicative only.

### Model selection

The choice of models, including the preparation of the input data, the variables to include in the fixed- and random-effects parts of the models, and the covariance matrices was determined through examination of a number of alternative models. Candidate models were compared using the residual log-likelihood from the model fit, as well as more qualitative examinations of parameter estimates, standard errors, various model diagnostics, and forecasts produced by each model.

All models except outbound passengers group the data by the Australian port through which the freight or passengers pass. Data associated with the five mainland capital city ports (Adelaide, Brisbane, Fremantle, Melbourne, and Sydney) are identified separately, while data for all other Australian ports is aggregated and modeled together as 'other ports'.

There are a number of reasons for examining the capital city ports separately. Capacity is a much bigger issue for these ports than many others around Australia. Located as they are in

urban areas, there is limited scope to expand their operations. This creates a specific need for detailed forecasts for these ports. Furthermore, with the exception of non-containerised exports, all five handle relatively large amounts of a broad range of commodities which provides sufficient data to attempt analysis by port. This also affects the volatility seen in historical data for these five ports, which is lower than for most other Australian ports, many of which specialise in particular commodities and are therefore affected by fluctuations in demand for those commodities which are not reflected in GRP or final demand figures.

### **Technical details**

The SAS language was used to prepare and analyse the data for the freight and passenger models. The statements used to fit the models are shown in Box I. Comments begin with an asterisk and are terminated with a semicolon, and keywords are shown in capitals. The statements used for the two exports models are identical, as are those for the two imports models. See Littell et al (1996) for more information on the MIXED procedure in SAS.

| Variable   | Description                                                                                                                                       |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| region     | Categorical variable representing destination region or origin region.                                                                            |
| port       | Categorical variable representing Australian port.                                                                                                |
| coastal    | Categorical variable distinguishing imports from inbound coastal freight.                                                                         |
| freight    | Natural logarithm of freight volume (in TEU for containerised models and tonnes for non-containerised) per capita of destination state or region. |
| passengers | Natural logarithm of passengers per capita of origin state or region.                                                                             |
| grp        | Natural logarithm of per capita gross regional product of destination region.                                                                     |
| rfd        | Natural logarithm of per capita real final demand of destination state, or for the whole of Australia for imports to "other ports".               |

The variables, appearing in Box I in lower case, are defined as follows:

#### Box I

```
* Statements to fit exports models;
PROC MIXED COVTEST;
    * Define classification variables (factors);
    CLASS region port;
    * Define fixed effects (y-vector and X-matrix);
   MODEL freight = port * grp / S;
    * Define random effects (Z- and G-matrices);
   RANDOM INTERCEPT / S TYPE=VC SUBJECT=region;
   * Define covariance structure (R-matrix);
    REPEATED / TYPE=AR(1) SUBJECT=region GROUP=port;
RUN;
* Statements to fit imports models;
PROC MIXED COVTEST;
    * Define classification variables (factors);
   CLASS coastal port;
    * Define fixed effects (y-vector and X-matrix);
   MODEL freight = rfd / \hat{s};
    * Define random effects (Z- and G-matrices);
   RANDOM INTERCEPT / S TYPE=VC SUBJECT=port;
    * Define covariance structure (R-matrix);
   REPEATED / TYPE=AR(1) SUBJECT=port GROUP=coastal;
RUN;
* Statements to fit inbound passenger model;
PROC MIXED COVTEST;
    * Define classification variables (factors);
   CLASS region;
   * Define fixed effects (y-vector and X-matrix);
   MODEL passengers = qrp / S;
    * Define random effects (Z- and G-matrices);
   RANDOM INTERCEPT / S TYPE=VC SUBJECT=region;
   * Define covariance structure (R-matrix);
   REPEATED / TYPE=AR(1) SUBJECT=region;
RUN;
* Statements to fit outbound passenger model;
PROC MIXED COVTEST;
    * Define classification variables (factors);
   CLASS port; * Note: all observations have same value of
"port";
    * Define fixed effects (y-vector and X-matrix);
   MODEL passengers = rfd / S;
    * Define covariance structure (R-matrix);
    REPEATED / TYPE=AR(1) SUBJECT=port;
RUN;
```

## **APPENDIX B** Destination regions as at November 2009

### Africa<sup>22</sup>

Algeria Botswana Burundi Central African Republic Congo, Democratic Republic of the Djibouti Eritrea Gambia Guinea-Bissau l iberia Malawi Mauritius Namibia Réunion Senegal Somalia Sudan Togo Western Sahara

Angola British Indian Ocean Territory Cameroon Chad Congo, Republic of the Egypt Ethiopia Ghana Kenya Libya Mali Morocco Niger Rwanda Seychelles South Africa Swaziland Tunisia Zimbabwe

Benin Burkina Faso Cape Verde Comoros Côte d'Ivoire Equatorial Guinea Gabon Guinea Lesotho Madagascar Mauritania Mozambique Nigeria Sao Tomé and Principe Sierra Leone St. Helena Tanzania Uganda

### North and Central America<sup>23</sup>

| Anguilla       | Antigua and Barbuda      |
|----------------|--------------------------|
| Barbados       | Belize                   |
| Canada         | Cayman Islands           |
| Cuba           | Dominica                 |
| El Salvador    | French Antilles          |
| Guatemala      | Haiti                    |
| Jamaica        | Johnston and Sand Island |
| Midway Islands | Montserrat               |
| Nicaragua      | Panama                   |
|                |                          |

Bahamas Bermuda Costa Rica Dominican Republic Grenada Honduras Mexico Netherlands Antilles Panama Canal Zone

22 Due to limitations of the data used, some passenger arrivals from North African countries may be counted as being from Middle Eastern countries instead.

23 Due to limitations of the data used, some passenger arrivals from Central American countries may be counted as being from South American countries instead.

Puerto Rico St. Pierre and Miquelon Turks and Caicos Islands Virgin Islands (U.S.) St. Kitts and Nevis St.Vincent and Grenadines United States of America St. Lucia Trinidad and Tobago Virgin Islands (British)

### South America

Argentina Chile Falkland Islands Paraguay Uruguay Bolivia Columbia French Guiana Peru Venezuela Brazil Ecuador Guyana Suriname

### East Asia

China Mongolia Hong Kong (SAR of China) Taiwan Macau (SAR of China)

### South East Asia

Brunei Indonesia Philippines Vietnam

## South Asia

Afghanistan Bangladesh India Maldives Sri Lanka Uzbekistan Burma (Myanmar) Laos Singapore Timor-Leste

Armenia

Bhutan

Nepal

Tajikistan

Kazakhstan

Cambodia Malaysia Thailand

Azerbaijan Georgia Kyrgystan Pakistan Turkmenistan

### Japan

Japan

### Korea

Korea, Democratic People's Republic Korea, Republic of of

### Europe

Albania Belgium Croatia Denmark France Greece Ireland Latvia Malta Netherlands Portugal Serbia Spain Ukraine Austria Bosnia and Herzegovina Cyprus Estonia Germany Hungary Italy Lithuania Moldova Norway Romania Slovak Republic Sweden United Kingdom Belarus Bulgaria Czech Republic Finland Gibraltar Iceland Kosovo Macedonia Montenegro Poland Russian Federation Slovenia Switzerland

### Middle East

| Bahrain | Iran                 | Iraq      |
|---------|----------------------|-----------|
| Israel  | Jordan               | Kuwait    |
| Lebanon | Oman                 | Palestine |
| Qatar   | Saudi Arabia         | Syria     |
| Turkey  | United Arab Emirates | Yemen     |

### New Zealand

New Zealand

### Pacific Islands and PNG

- American Samoa Fiji Guam Micronesia Niue Palau Ross Dependency Tokelau Vanuatu
- Australian Antarctic Territory French Polynesia Kiribati Nauru Norfolk Island Papua New Guinea Samoa Tonga Wake Island

Cook Islands French South Antarctic Territory Marshall Islands New Caledonia Northern Mariana Islands Pitcairn Island Solomon Islands Tuvalu Wallis and Futuna Islands

### Australia

Australia

## APPENDIX C Tabulated forecasts

| Financial year         | Adelaide       | Brisbane | Fremantle | Melbourne  | Sydney    | Other ports | Total       |
|------------------------|----------------|----------|-----------|------------|-----------|-------------|-------------|
|                        |                |          |           | (TEU)      |           |             |             |
| 1995–96                | 35 63 1        | 108 520  | 81 110    | 300 371    | 218 976   | 58   35     | 802 743     |
| 1996–97                | 45 395         | 120 093  | 81 738    | 327 714    | 232 689   | 70 884      | 878 514     |
| 1997–98                | 48 866         | 32  8    | 91 254    | 335  5     | 251 393   | 78 812      | 937 657     |
| 1998–99                | 53 100         | 150 778  | 100 949   | 354 869    | 262 784   | 83 088      | 1 005 568   |
| 1999-00                | 54 535         | 167 795  | 107 981   | 402 877    | 295 559   | 109 167     | 37 9 4      |
| 2000-01                | 62 66 1        | 184 339  | 119 745   | 426   68   | 305 880   | 59 943      | 58 736      |
| 2001-02                | 69 572         | 187 084  | 128 880   | 447 464    | 304 173   | 166 081     | 303 254     |
| 2002–03                | 70 118         | 179 359  | 129 560   | 441 268    | 272 173   | 129 646     | 222   24    |
| 2003–04                | 84 752         | 191 631  | 146 934   | 445 754    | 280 478   | 123 922     | 273 47      |
| 2004–05                | 78 741         | 217 704  | 154 305   | 499 018    | 293 033   | 154 655     | I 397 455   |
| 2005–06                | 89 978         | 229 842  | 151 569   | 513 948    | 313 081   | 167 984     | I 466 402   |
| 2006–07                | 95 871         | 233 842  | 161 177   | 534 168    | 320 015   | 107 900     | I 452 973   |
| 2007–08                | 115 495        | 228 873  | 195 752   | 536 389    | 321 649   | 100 097     | I 498 255   |
| 2008–09                | 88 914         | 234 795  | 175 081   | 561 387    | 335 962   | 98 565      | I 494 705   |
| 2009-10                | 77     4       | 232 783  | 166 382   | 564 794    | 338 403   | 95 819      | 475 293     |
| 2010-11                | 74 811         | 241 543  | 170 977   | 597 423    | 356 596   | 98 900      | 1 540 249   |
| 2011-12                | 75 721         | 253 247  | 179 241   | 638 639    | 379 344   | 104 260     | I 630 453   |
| 2012-13                | 78 254         | 266 879  | 189 295   | 685 801    | 405 552   | 34          | 736 914     |
| 2013-14                | 81813          | 282 068  | 200 644   | 738 286    | 434 862   | 119 349     | 857 021     |
| 2014-15                | 85 989         | 298 430  | 212 823   | 794 933    | 466 513   | 128 588     | I 987 276   |
| 2015-16                | 90 693         | 316 331  | 225 960   | 857 031    | 501 055   | 138 872     | 2 1 2 9 4 2 |
| 2016-17                | 95 870         | 335 886  | 240 112   | 925 157    | 538 771   | 150 173     | 2 285 969   |
| 2017-18                | 101 500        | 357 230  | 255 358   | 999 953    | 579 968   | 162 482     | 2 456 492   |
| 2018-19                | 107 587        | 380 509  | 271 788   | 082   35   | 624 991   | 175 808     | 2 642 817   |
| 2019–20                | 4  44          | 405 886  | 289 505   | 72 50      | 674 217   | 190 176     | 2 846 428   |
| 2020-21                | 121 197        | 433 542  | 308 621   | 27  939    | 728 066   | 205 627     | 3 068 992   |
| 2021-22                | 128 777        | 463 679  | 329 258   | 38  442    | 787 001   | 222 215     | 3 312 372   |
| 2022–23                | 136 924        | 496 517  | 351 552   | 502   4    | 851 538   | 240 009     | 3 578 653   |
| 2023–24                | 145 678        | 532 300  | 375 650   | 635   89   | 922 244   | 259 094     | 3 870 155   |
| 2024–25                | 155 087        | 571 299  | 401 714   | 1 782 044  | 999 751   | 279 566     | 4   89 46   |
| 2025–26                | 165 205        | 613 811  | 429 920   | 1 944 216  | I 084 755 | 301 537     | 4 539 445   |
| 2026–27                | 176 088        | 660   64 | 460 462   | 2   23 423 | 78 032    | 325   35    | 4 923 303   |
| 2027–28                | 187 797        | 710718   | 493 553   | 2 321 581  | I 280 440 | 350 501     | 5 344 590   |
| 2028–29                | 200 403        | 765 871  | 529 425   | 2 540 834  | 392 929   | 377 793     | 5 807 255   |
| 2029–30                | 213 977        | 826 063  | 568 334   | 2 783 576  | 5 6 556   | 407 186     | 6315692     |
| Average growth rate (p | per cent per a | annum)   |           |            |           |             |             |
| Actual historical      | 10.30          | 6.42     | 7.62      | 4.95       | 3.26      | 4.63        | 5.34        |
| 2007–08 to 2029–30     | 2.84           | 6.01     | 4.96      | 7.77       | 7.30      | 6.59        | 6.76        |
| 2007–08 to 2012–13     | -7.49          | 3.12     | -0.67     | 5.04       | 4.74      | 2.11        | 3.00        |
| 2012–13 to 2029–30     | 6.10           | 6.87     | 6.68      | 8.59       | 8.07      | 7.94        | 7.89        |

#### TC.I Containerised exports by port of origin

Source: ABS (2009a), BITRE (2008), BITRE modelling.

| Financial year         | Adelaide       | Brisbane | Fremantle | Melbourne | Sydney    | Other ports | Total     |
|------------------------|----------------|----------|-----------|-----------|-----------|-------------|-----------|
| ,                      |                |          |           | (TEU)     | , ,       | I           |           |
| 1995–96                | 15 436         | 75 216   | 71 228    | 323 808   | 347 237   | 9   39      | 842 064   |
| 1996–97                | 20 296         | 87 318   | 75 991    | 351 401   | 369 601   | 12 672      | 917 279   |
| 1997–98                | 28 572         | 110 680  | 90 597    | 382 657   | 405 096   | 19 581      | 037   83  |
| 1998–99                | 31219          | 122 484  | 88 027    | 415 293   | 439 507   | 13 687      | 0 2 7     |
| 1999–00                | 28 342         | 150 828  | 89 235    | 482 061   | 520 424   | 20 815      | 29  705   |
| 2000-01                | 30 406         | 144 439  | 92 401    | 482 769   | 492 554   | 22 588      | 265   57  |
| 2001-02                | 32 550         | 163 106  | 110 078   | 506 368   | 506 271   | 53 369      | 37  743   |
| 2002–03                | 32 703         | 206 988  | 134 437   | 585 441   | 583 686   | 21 165      | 1 564 420 |
| 2003–04                | 33 225         | 239 408  | 151 051   | 658 632   | 638   42  | 23 847      | 1 744 304 |
| 2004–05                | 32 279         | 270 368  | 159 139   | 728 385   | 683 199   | 63 285      | 1 936 655 |
| 2005–06                | 38   47        | 298 865  | 161 454   | 750 643   | 717 733   | 48   49     | 2014991   |
| 2006–07                | 49 374         | 329   46 | 175 338   | 828 807   | 795 443   | 43 420      | 2 221 528 |
| 2007–08                | 63 040         | 366 826  | 195 948   | 922 781   | 880 458   | 33 349      | 2 462 402 |
| 2008–09                | 57 743         | 361 560  | 241 216   | 940 435   | 816 190   | 40 088      | 2 457 232 |
| 2009-10                | 57 046         | 333 957  | 263 097   | 937 660   | 789 361   | 42 693      | 2 423 814 |
| 2010-11                | 56 957         | 348   84 | 317 522   | 954 852   | 799 470   | 46 029      | 2 523 014 |
| 2011-12                | 56 391         | 359 679  | 340 376   | 958 450   | 821 100   | 47 795      | 2 583 791 |
| 2012-13                | 57 232         | 379 267  | 342 446   | 985 813   | 853 728   | 49 660      | 2 668 146 |
| 2013-14                | 60 299         | 415 204  | 337 383   | 1 053 934 | 915 015   | 52 868      | 2 834 703 |
| 2014-15                | 61 906         | 437 460  | 340 427   | 09  78    | 950 005   | 54 801      | 2 936 380 |
| 2015-16                | 62 238         | 446 610  | 342 590   | 0   75    | 961 749   | 55 469      | 2 969 830 |
| 2016-17                | 63 382         | 464   33 | 354 396   | 30 367    | 988 370   | 57   40     | 3 057 789 |
| 2017-18                | 66 178         | 498 175  | 381 461   | 9  8 5    | 1 043 548 | 60 596      | 3 241 771 |
| 2018-19                | 68 305         | 525 396  | 404 050   | 1 238 236 | 1 086 280 | 63 310      | 3 385 578 |
| 2019–20                | 69 038         | 539 582  | 415 717   | 257   99  | 04 837    | 64 587      | 3 450 960 |
| 2020-21                | 72 235         | 556 871  | 429 446   | I 308 527 | 53 776    | 67   60     | 3 588 014 |
| 2021-22                | 75 596         | 575 003  | 443 833   | 362 342   | 205   32  | 69 855      | 3 73   76 |
| 2022–23                | 79   32        | 594 018  | 458 918   | 4 8 784   | 1 259 062 | 72 682      | 3 882 595 |
| 2023–24                | 82 852         | 613 941  | 474 729   | I 477 972 | 3 5 690   | 75 645      | 4 040 830 |
| 2024–25                | 86 768         | 634 826  | 491 308   | I 540 075 | 375   86  | 78 753      | 4 206 917 |
| 2025–26                | 90 892         | 656 728  | 508 698   | I 605 278 | I 437 733 | 82 015      | 4 381 344 |
| 2026–27                | 95 239         | 679 703  | 526 943   | I 673 774 | 1 503 523 | 85 441      | 4 564 622 |
| 2027–28                | 99 823         | 703 823  | 546 100   | 745 80    | 1 572 795 | 89 041      | 4 757 382 |
| 2028–29                | 104 660        | 729   55 | 566 218   | 82  576   | I 645 768 | 92 826      | 4 960 204 |
| 2029–30                | 109 768        | 755 765  | 587 351   | 90  333   | 1 722 683 | 96 809      | 5 173 708 |
| Average growth rate (p | oer cent per a | annum)   |           |           |           |             |           |
| Actual historical      | 12.44          | 4, 2     | 8.80      | 9.12      | 8.06      | 11.39       | 9.35      |
| 2007–08 to 2029–30     | 2.55           | 3.34     | 5.12      | 3.34      | 3.10      | 4.96        | 3.43      |
| 2007–08 to 2012–13     | -1.91          | 0.67     | .8        | 1.33      | -0.61     | 8.29        | 1.62      |
| 2012–13 to 2029–30     | 3.91           | 4.14     | 3.22      | 3.94      | 4.22      | 4.00        | 3.97      |

Source: ABS (2009a), BITRE modelling.

| Financial year         | Adelaide                                 | Brisbane | Fremantle | Melbourne | Sydney | Other ports | Total    |  |  |
|------------------------|------------------------------------------|----------|-----------|-----------|--------|-------------|----------|--|--|
| · -                    |                                          |          |           | (TEU)     |        |             |          |  |  |
| 1995–96                | 3 859                                    | 45       | 12 721    | 71 287    | I 733  | 36 846      | 127 591  |  |  |
| 1996–97                | 5 074                                    | 330      | 13 945    | 81 044    | I 864  | 33 774      | 137 031  |  |  |
| 1997–98                | 7   43                                   | I 685    | 18617     | 81 928    | 2019   | 40 778      | 152 171  |  |  |
| 1998–99                | 7 805                                    | I 865    | 23 705    | 81 792    | 2 225  | 41 168      | 158 560  |  |  |
| 1999–00                | 7 085                                    | 2 297    | 34   56   | 92 596    | 2 590  | 108 618     | 247 342  |  |  |
| 2000-01                | 7 602                                    | 479      | 44   30   | 91 975    | 2 458  | 106 168     | 253 812  |  |  |
| 2001-02                | 8   38                                   | 2913     | 45 586    | 99 941    | 2 536  | 85 229      | 244 343  |  |  |
| 2002–03                | 8 176                                    | 4 994    | 51 649    | 112 538   | 2810   | 135 263     | 315 430  |  |  |
| 2003–04                | 8 306                                    | 13 599   | 57 292    | 118 907   | 4 876  | 157 847     | 360 828  |  |  |
| 2004–05                | 8 070                                    | 16 864   | 50 572    | 125 088   | 4   47 | 138 345     | 343 086  |  |  |
| 2005–06                | 9 537                                    | 10 640   | 44 313    | 122 023   | 2 861  | 131 207     | 320 581  |  |  |
| 2006–07                | 12 344                                   | 16 941   | 59 556    | 119 975   | 4 392  | 163 269     | 376 477  |  |  |
| 2007–08                | 15 760                                   | 25 517   | 59 765    | 127 791   | 7 041  | 125 668     | 361 542  |  |  |
| 2008–09                | 16 160                                   | 25 895   | 61 837    | 128 287   | 7 368  | 131 528     | 371 075  |  |  |
| 2009-10                | 16718                                    | 24 361   | 62 670    | 126 503   | 7 627  | 33  56      | 371 035  |  |  |
| 2010-11                | 17 007                                   | 25 752   | 73 235    | 127 624   | 8 087  | 141 463     | 393   69 |  |  |
| 2011-12                | 16 965                                   | 26 920   | 77 314    | 127 011   | 8616   | 146 884     | 403 710  |  |  |
| 2012-13                | 17 267                                   | 28 701   | 77   39   | 129 570   | 9 255  | 153 519     | 415 452  |  |  |
| 2013-14                | 18211                                    | 31 754   | 75 587    | 137 422   | 10 229 | 164 795     | 437 997  |  |  |
| 2014-15                | 18 700                                   | 33 802   | 75 947    | 141 246   | 10 940 | 172 390     | 453 025  |  |  |
| 2015-16                | 18 798                                   | 34 860   | 76   48   | 141 366   | 402    | 176 148     | 458 722  |  |  |
| 2016-17                | 19 139                                   | 36 591   | 78 500    | 144 014   | 12 057 | 183 188     | 473 489  |  |  |
| 2017-18                | 19 978                                   | 39 663   | 84 213    | 150 707   | 13 094 | 196 108     | 503 763  |  |  |
| 2018-19                | 20 614                                   | 42 237   | 88 910    | 155 422   | 14014  | 206 819     | 528 016  |  |  |
| 2019-20                | 20 829                                   | 43 795   | 91 185    | 156 653   | 14 650 | 212 947     | 540 058  |  |  |
| 2020-21                | 21 786                                   | 45 627   | 93 899    | 161 877   | 15 718 | 223 457     | 562 365  |  |  |
| 2021-22                | 22 793                                   | 47 554   | 96 744    | 167 339   | 16 862 | 234 528     | 585 820  |  |  |
| 2022–23                | 23 852                                   | 49 580   | 99 725    | 173 051   | 18 087 | 246 196     | 610 492  |  |  |
| 2023–24                | 24 966                                   | 51711    | 102 849   | 179 025   | 19 399 | 258 491     | 636 440  |  |  |
| 2024–25                | 26   38                                  | 53 951   | 106 123   | 185 275   | 20 803 | 271 451     | 663 742  |  |  |
| 2025–26                | 27 373                                   | 56 308   | 109 555   | 191 819   | 22 308 | 285 120     | 692 483  |  |  |
| 2026–27                | 28 674                                   | 58 788   | 113 154   | 198 675   | 23 919 | 299 543     | 722 754  |  |  |
| 2027–28                | 30 046                                   | 61 401   | 116931    | 205 866   | 25 646 | 314 773     | 754 663  |  |  |
| 2028–29                | 31 493                                   | 64   54  | 120 896   | 213411    | 27 498 | 330 863     | 788 314  |  |  |
| 2029–30                | 33 021                                   | 67 056   | 125 057   | 221 332   | 29 483 | 347 866     | 823 814  |  |  |
| Average growth rate (p | Average growth rate (per cent per annum) |          |           |           |        |             |          |  |  |
| Actual historical      | 12.44                                    | 29.52    | 13.76     | 4.98      | 12.39  | 10.77       | 9.07     |  |  |
| 2007–08 to 2029–30     | 3.42                                     | 4.49     | 3.41      | 2.53      | 6.73   | 4.74        | 3.81     |  |  |
| 2007–08 to 2012–13     | 1.84                                     | 2.38     | 5.24      | 0.28      | 5.62   | 4.08        | 2.82     |  |  |
| 2012-13 to 2029-30     | 3.89                                     | 5.12     | 2.88      | 3.20      | 7.05   | 4.93        | 4.11     |  |  |

#### TC.3 Coastal container movements by port of destination

Source: ABS (2009a), BITRE modelling.

#### TC.4 Total container throughput by port

| Financial year         | Adelaide    | Brisbane  | Fremantle | Melbourne   | Sydney     | Other ports | Total       |
|------------------------|-------------|-----------|-----------|-------------|------------|-------------|-------------|
| -                      |             |           |           | (TEU)       |            |             |             |
| 1995–96                | 69 355      | 249 439   | 202 680   | 923 303     | 704 276    | 170 470     | 2 319 523   |
| 1996–97                | 88 497      | 272 632   | 209 775   | 985 584     | 746 297    | 172 527     | 2 475 312   |
| 1997–98                | 107 912     | 317 568   | 251 594   | 1 046 863   | 820 765    | 204 615     | 2 749 317   |
| 1998–99                | 120 586     | 357 703   | 276   56  | 23 095      | 899 919    | 212 667     | 2 990 126   |
| 1999–00                | 115 506     | 414 449   | 299 756   | 289 459     | 1 036 622  | 387 270     | 3 543 062   |
| 2000-01                | 133 236     | 439 194   | 354 855   | 322 083     | 1 013 498  | 388 247     | 3 651 113   |
| 2001-02                | 145 226     | 465 359   | 383 676   | I 423 078   | 1 029 255  | 488 947     | 3 935 541   |
| 2002–03                | 148 333     | 548 945   | 431 861   | 1 595 909   | 1 160 452  | 552 145     | 4 437 645   |
| 2003–04                | 169 108     | 621 380   | 464 274   | 72  395     | 270   43   | 605 459     | 4 851 759   |
| 2004–05                | 170 585     | 715 995   | 467 778   | 1 910 362   | 376   94   | 521 271     | 5   62   85 |
| 2005–06                | 189 391     | 742 756   | 456 032   | I 929 988   | 1 445 064  | 524 607     | 5 287 838   |
| 2006–07                | 219117      | 839 716   | 505 507   | 2 093 423   | 620   2    | 515 971     | 5 793 846   |
| 2007–08                | 280 121     | 899 984   | 582 674   | 2 256 640   | 1 778 366  | 481 170     | 6 278 955   |
| 2008–09                | 223 119     | 904 764   | 697 451   | 2 338 500   | 682 4 5    | 428 843     | 6 275 092   |
| 2009-10                | 194 549     | 836 724   | 749 726   | 2 328 522   | 628   36   | 428 884     | 6   66 54   |
| 2010-11                | 189 340     | 873 197   | 899 296   | 2 368 593   | 1 649 728  | 457 279     | 6 437 433   |
| 2011-12                | 191 905     | 902 766   | 961 280   | 2 375 125   | 1 694 995  | 474 807     | 6 600 878   |
| 2012-13                | 198 411     | 952 664   | 965 641   | 2 440 598   | I 762 955  | 495 539     | 6 815 809   |
| 2013-14                | 207 463     | 1 043 712 | 950 415   | 2 606 836   | 890   45   | 530 866     | 7 229 437   |
| 2014-15                | 217 951     | 1 100 465 | 958 250   | 2 698 018   | 1 963 078  | 554 103     | 7 491 864   |
| 2015-16                | 229 668     | 24 302    | 963 690   | 2718835     | 1 988 014  | 564 897     | 7 589 406   |
| 2016-17                | 242 584     | 69 262    | 996 273   | 2 788 506   | 2 043 735  | 586 145     | 7 826 505   |
| 2017-18                | 256 689     | 1 255 928 | 07  709   | 2 937 607   | 2   58 573 | 626 083     | 8 306 590   |
| 2018-19                | 271 881     | 1 325 506 | 34 507    | 3 049 500   | 2 247 750  | 658 826     | 8 687 969   |
| 2019–20                | 288 171     | I 362 270 | 66 592    | 3 093 685   | 2 286 957  | 676 888     | 8 874 564   |
| 2020-21                | 305 737     | 1 406 920 | 204 435   | 3 270 680   | 2 389 115  | 708 794     | 9 285 681   |
| 2021-22                | 324 608     | 453 76    | 244 09    | 3 517 757   | 2 496 367  | 742 371     | 9 778 955   |
| 2022–23                | 344 878     | I 502 895 | 1 285 669 | 3 789 502   | 2 609 041  | 777 721     | 10 309 706  |
| 2023–24                | 366 652     | 1 554 394 | 329 248   | 4 088 617   | 2 727 403  | 814 933     | 10 881 247  |
| 2024–25                | 390 048     | I 608 395 | 374 938   | 4 4 8 1 2 3 | 2851814    | 854 124     | 497 44      |
| 2025–26                | 415 195     | I 665 042 | 422 858   | 4 781 391   | 2 982 661  | 895 418     | 12 162 565  |
| 2026–27                | 442 234     | 1 724 484 | 473   30  | 5   82   86 | 3 120 354  | 938 948     | 12 881 335  |
| 2027–28                | 471 319     | 786 9     | 525 911   | 5 624 714   | 3 265 394  | 984 874     | 3 659  23   |
| 2028–29                | 502 619     | 1 852 492 | 58  334   | 6     3 673 | 3 418 252  | 1 033 348   | 14 501 717  |
| 2029–30                | 536 315     | I 958 283 | 639 546   | 6 654 312   | 3 579 432  | 084 53      | 15 452 419  |
| Average growth rate (p | er cent per | annum)    |           |             |            |             |             |
| Actual historical      | 12.34       | 11.29     | 9.20      | 7.73        | 8.02       | 9.03        | 8.65        |
| 2007–08 to 2029–30     | 3.00        | 3.60      | 4.81      | 5.04        | 3.23       | 3.76        | 4.18        |
| 2007–08 to 2012–13     | -6.67       | 1.14      | 10.63     | 1.58        | -0.17      | 0.59        | 1.65        |
| 2012-13 to 2029-30     | 6.02        | 4.33      | 3.16      | 6.08        | 4.25       | 4.72        | 4.93        |

Source: ABS (2009a), BITRE modelling. Note: Includes empty containers.

| Financial year        | Adelaide     | Brisbane    | Fremantle   | Melbourne | Sydney    | Other ports | Total      |
|-----------------------|--------------|-------------|-------------|-----------|-----------|-------------|------------|
| ,                     |              |             |             | (TEU)     | , ,       |             |            |
| 1995–96               | 1 420 647    | 5 719 632   | 8 056 807   | 1 822 833 | 922 911   | 341485108   | 359427938  |
| 1996–97               | 1 855 199    | 6 480 068   | 8 005 878   | 2 376 918 | 999 592   | 368636904   | 388354559  |
| 1997–98               | 1 290 067    | 5 613 058   | 9 461 514   | 2 326 961 | 826 637   | 390565953   | 410084190  |
| 1998–99               | 776   30     | 5 322 337   | 8 960 521   | 2 065 840 | 449 687   | 394105473   | 412679987  |
| 1999–00               | 932 500      | 6 017 329   | 9 269 146   | 2 232 327 | 738   37  | 422174757   | 442364196  |
| 2000-01               | 2 422 978    | 6 293 967   | 8 576 395   | 3 046 012 | 1 027 699 | 453994345   | 475361396  |
| 2001-02               | 2 810 287    | 7 479 442   | 7 349 875   | 3 332 473 | 576 975   | 459145708   | 480694760  |
| 2002–03               | 2310161      | 6 343 126   | 7 311 907   | 1 861 610 | 572 172   | 490962299   | 509361276  |
| 2003–04               | 2 041 559    | 5 589 575   | 8 687 181   | 2 317 505 | 631 803   | 518065550   | 537333171  |
| 2004–05               | 2 178 468    | 5 996 356   | 9 321 525   | 2 219 435 | 796 056   | 559338074   | 579849913  |
| 2005–06               | 2 323 581    | 6 578 799   | 9 707 432   | 4 9 406   | 877 321   | 573974431   | 594880970  |
| 2006–07               | 1 815 569    | 6 740 237   | 8 089 650   | 2 837 135 | 63    9   | 617022913   | 638136622  |
| 2007–08               | 1 285 745    | 8 292 043   | 7  2  875   | 2 251 066 | 1 608 982 | 664037453   | 684597164  |
| 2008–09               | 2 6 222      | 4 993 293   | 6 736 948   | 2011412   | 1 094 533 | 676062814   | 692115222  |
| 2009-10               | 1 206 335    | 4 694 137   | 6712945     | I 983 975 | 877 378   | 674317859   | 689792628  |
| 2010-11               | 228 8 2      | 4 702 188   | 6 885 838   | 2 005 619 | 770 028   | 692247115   | 707839599  |
| 2011-12               | 264   22     | 4 756 857   | 7 092 018   | 2 033     | 712 572   | 714619539   | 730478219  |
| 2012-13               | 303 321      | 4 821 172   | 7 287 924   | 2 059 695 | 680 592   | 738340569   | 754493274  |
| 2013-14               | 1 340 820    | 4 885 384   | 7 461 137   | 2 083 704 | 662   56  | 762639505   | 779072706  |
| 2014-15               | 1 375 747    | 4 949 667   | 7 613 826   | 2 106 783 | 652 061   | 787164983   | 803863068  |
| 2015-16               | 1 407 653    | 5015417     | 7 753 978   | 2   29 83 | 647 113   | 812799753   | 829753747  |
| 2016-17               | 1 436 560    | 5 082 620   | 7 886 340   | 2 153 096 | 645 413   | 839601210   | 856805239  |
| 2017-18               | 462 800      | 5   5   302 | 8014516     | 2 176 703 | 645 809   | 867629872   | 885081001  |
| 2018-19               | 486 8 4      | 5 221 499   | 8   4   030 | 2 200 716 | 647 582   | 896949561   | 914647201  |
| 2019–20               | 509 05       | 5 293 250   | 8 267 577   | 2 225 172 | 650 275   | 927627585   | 945572910  |
| 2020-21               | 529 92       | 5 366 594   | 8 395 277   | 2 250 092 | 653 597   | 959734937   | 977930418  |
| 2021-22               | 1 549 774    | 5 441 576   | 8 524 871   | 2 275 493 | 657 359   | 993346496   | 1011795569 |
| 2022–23               | 568 902      | 5 518 238   | 8 656 858   | 2 301 390 | 661 437   | 1028541252  | 1047248076 |
| 2023–24               | 1 587 540    | 5 596 625   | 8 791 581   | 2 327 796 | 665 752   | 1065402534  | 1084371828 |
| 2024–25               | I 605 876    | 5 676 784   | 8 929 292   | 2 354 724 | 670 254   | 1104018255  | 1123255186 |
| 2025–26               | 1 624 060    | 5 758 766   | 9 070 183   | 2 382 188 | 674 910   | 4448  72    | 6399 279   |
| 2026–27               | 1 642 209    | 5 842 619   | 9214414     | 2 410 203 | 679 699   | 1186889156  | 1206678301 |
| 2027–28               | 660 417      | 5 928 399   | 9 362 124   | 2 438 784 | 684 609   | 1231345485  | 1251419819 |
| 2028–29               | I 678 758    | 6016160     | 9513443     | 2 467 946 | 689 633   | 1277959151  | 1298325091 |
| 2029–30               | 1 697 290    | 6 105 960   | 9 668 496   | 2 497 706 | 694 768   | 326845 79   | 1347509400 |
| Average growth rate ( | per cent per | annum)      |             |           |           |             |            |
| Actual historical     | -0.83        | 3.14        | -1.02       | 1.77      | 4.74      | 5.70        | 5.52       |
| 2007–08 to 2029–30    | 1.27         | -1.38       | 1.40        | 0.47      | -3.75     | 3.20        | 3.13       |
| 2007–08 to 2012–13    | 0.27         | -10.28      | 0.46        | -1.76     | -15.81    | 2.14        | 1.96       |
| 2012-13 to 2029-30    | 1.57         | 1.40        | 1.68        | 1.14      | 0.12      | 3.51        | 3.47       |

#### TC.5 Non-containerised exports by port of origin

 Source:
 ABS (2009a), BITRE (2008), BITRE modelling.

 Note:
 Due to the volatility and relative thinness of historical export volumes for the five capital city ports, forecasts for these ports are subject to substantial uncertainty.

| Financial year         | Adelaide     | Brisbane   | Fremantle  | Melbourne   | Sydney     | Other ports | Total    |
|------------------------|--------------|------------|------------|-------------|------------|-------------|----------|
|                        |              |            |            | (TEU)       |            | •           |          |
| 1995–96                | 661 887      | 6 269 527  | 5 259 901  | 2 647 620   | 7 201 151  | 15769455    | 37809541 |
| 1996–97                | 360   68     | 5 983 367  | 6 323 672  | 2913790     | 6 380 633  | 17786224    | 39747853 |
| 1997–98                | 664 193      | 6 473 365  | 5 898 204  | 2 305 603   | 5 704 115  | 18949626    | 39995106 |
| 1998–99                | 3 9 974      | 7 031 658  | 6 487 164  | 4 065 129   | 7 463 297  | 17735525    | 44102747 |
| 1999–00                | 1829929      | 7 397 995  | 5 852 718  | 3 377 385   | 6 443 559  | 18182321    | 43083909 |
| 2000-01                | 477 691      | 6814219    | 4 595 234  | 2 733 334   | 7 678 596  | 20392383    | 42691456 |
| 2001-02                | 443 000      | 6 533 159  | 5 852 384  | 2 513 900   | 7 503 920  | 21178570    | 44024933 |
| 2002–03                | 376 815      | 7 516 424  | 6 420 800  | 3 396 446   | 7 025 055  | 21580828    | 46316368 |
| 2003–04                | 36  079      | 7 491 535  | 6 668 691  | 3 25   3    | 7 730 241  | 19704118    | 46206975 |
| 2004–05                | 1 442 602    | 7 881 489  | 7 071 768  | 3 757 336   | 7 795 910  | 21457314    | 49406418 |
| 2005–06                | I 652 043    | 7 886 641  | 6718909    | 4 342 712   | 8 836 980  | 2200283 I   | 5 440  5 |
| 2006–07                | 1 777 049    | 9 287 124  | 7 574 117  | 6 443 908   | 10 820 337 | 21672359    | 57574894 |
| 2007–08                | 8 5 777      | 9 661 466  | 8 373 966  | 6 745 770   | 30 229     | 23805827    | 61533035 |
| 2008–09                | 1 486 724    | 9 793 653  | 8 468 665  | 5 702 046   | 10 167 093 | 24746368    | 60364548 |
| 2009-10                | I 350 053    | 9 732 761  | 8 572 072  | 5 223 501   | 9 717 539  | 25266872    | 59862799 |
| 2010-11                | 1 287 020    | 10 003 682 | 9 062 476  | 5 038 535   | 9 594 852  | 26033507    | 61020072 |
| 2011-12                | 1 254 874    | 10 251 971 | 9 326 733  | 4 958 519   | 9 615 952  | 26585844    | 61993894 |
| 2012-13                | 1 248 947    | 10 564 672 | 9 454 560  | 4 976 073   | 9 728 814  | 27163560    | 63136626 |
| 2013-14                | 1 265 447    | 11 000 143 | 9 538 408  | 5 082 100   | 9 960 209  | 27942601    | 64788908 |
| 2014-15                | I 277 793    | 11 327 669 | 9 692 022  | 5   62   62 | 10 123 613 | 28522660    | 66105918 |
| 2015-16                | 1 285 286    | 11 558 943 | 9 841 521  | 5 213 321   | 10 225 946 | 28914430    | 67039448 |
| 2016-17                | 1 298 930    | 85  566    | 10 070 621 | 5 295 924   | 10 377 941 | 29452445    | 68347427 |
| 2017-18                | 1 322 677    | 12 259 843 | 10 419 605 | 5 422 827   | 10614919   | 30242150    | 70282023 |
| 2018-19                | 1 342 788    | 12 616 241 | 10 729 805 | 5 530 574   | 10 814 557 | 30917910    | 71951874 |
| 2019–20                | I 355 268    | 12 882 817 | 10 956 607 | 5 604 034   | 10 945 875 | 31391739    | 73136339 |
| 2020-21                | 38  272      | 3  69 935  | 98 459     | 5718062     | 6  079     | 32040175    | 74668983 |
| 2021-22                | 1 407 779    | 3 462 0 3  | 11 444 555 | 5 834 292   | 11 380 275 | 32699758    | 76228672 |
| 2022–23                | 1 434 759    | 3 759  26  | 694 90     | 5 952 644   | 11 603 352 | 33370619    | 77815401 |
| 2023–24                | 1 462 205    | 14 061 426 | 949 58     | 6 073 108   | 830 332    | 34053061    | 79429713 |
| 2024–25                | 490   09     | 14 368 951 | 12 208 629 | 6 195 664   | 12 061 191 | 34747159    | 81071703 |
| 2025–26                | 5 8 468      | 4 68  738  | 12 472 082 | 6 320 301   | 12 295 919 | 35452971    | 82741479 |
| 2026–27                | 547 281      | 14 999 837 | 12 739 982 | 6 447 017   | 12 534 515 | 36170564    | 84439195 |
| 2027–28                | 1 576 540    | 15 323 232 | 13 012 324 | 6 575 790   | 12 776 930 | 36899857    | 86164672 |
| 2028–29                | 1 606 246    | 15 651 971 | 13 289 158 | 6 706 627   | 13 023 172 | 37640921    | 87918096 |
| 2029–30                | 1 636 399    | 15 986 104 | 13 570 532 | 6 839 535   | 13 273 248 | 38393823    | 89699641 |
| Average growth rate (p | per cent per | annum)     |            |             |            |             |          |
| Actual historical      | 8.77         | 3.67       | 3.95       | 8.11        | 3.70       | 3.49        | 4,14     |
| 2007–08 to 2029–30     | -0.47        | 2.32       | 2,22       | 0.06        | 0.80       | 2.20        | 1.73     |
| 2007–08 to 2012–13     | -7.21        | 1.80       | 2.46       | -5.90       | -2.66      | 2.67        | 0.52     |
| 2012–13 to 2029–30     | 1.60         | 2.47       | 2.15       | 1.89        | 1.84       | 2.06        | 2.09     |

Source: ABS (2009a), BITRE modelling. Note: Due to the volatility of historical import volumes for Adelaide, Melbourne and Sydney, forecasts for these ports are subject to substantial uncertainty.

| Financial year        | Adelaide      | Brisbane      | Fremantle    | Melbourne  | Sydney       | Other ports    | Total          |
|-----------------------|---------------|---------------|--------------|------------|--------------|----------------|----------------|
|                       |               |               |              | (TEU)      | , ,          |                |                |
| 1995–96               | 596 677       | 2   59     2  | 2   45 9   2 | 3 628 504  | 5 068 190    | 31 210 432     | 45 808 827     |
| 1996–97               | 1 923 008     | 2 555 730     | 2 476 988    | 2 638 820  | 5 679 757    | 31 797 814     | 47 072 117     |
| 1997–98               | 2 843 016     | 3 531 072     | 2 079 929    | 3 386 078  | 6 08 1 8 1 3 | 33 598 336     | 51 520 244     |
| 1998–99               | 569 529       | 2 619 035     | 347   07     | 2 694 773  | 3 675 948    | 33 090 628     | 44 997 020     |
| 1999–00               | 2 036 003     | 3     6 632   | 1 746 036    | 2 774 706  | 5 648 328    | 30 790 380     | 46     2 085   |
| 2000-01               | 2 205 359     | 2 897 522     | 2 966 555    | 3 255 454  | 5 677 526    | 31 082 698     | 48 085 114     |
| 2001-02               | 2 245 762     | 3 264 350     | 2 498 576    | 3 668 933  | 5 370 785    | 33     7 88    | 50 166 287     |
| 2002–03               | 2514199       | 3 622 459     | 2 666 120    | 3 618 262  | 5 852 934    | 30 949 521     | 49 223 496     |
| 2003–04               | 2 847 917     | 2 844 543     | 2 645 216    | 4 050 907  | 5 893 627    | 31 259 767     | 49 541 977     |
| 2004–05               | 3 094 087     | 2 794 259     | 2 032 106    | 3 540 594  | 5 378 767    | 31 863 200     | 48 703 013     |
| 2005–06               | 4 073 562     | 3 530 974     | 2 079 471    | 3 498 560  | 5 054 584    | 32 664 492     | 50 901 643     |
| 2006–07               | 5 156 375     | 3 993 968     | 2 591 725    | 3 984 002  | 6 064 63 I   | 33 843 256     | 55 633 956     |
| 2007–08               | 5 739 241     | 3 575 185     | 2 820 677    | 3 489 308  | 4   34 38    | 34 864 451     | 54 623 243     |
| 2008–09               | 4 546 777     | 3 860 790     | 3 011 505    | 3 874 828  | 4 890 561    | 37 281 001     | 57 465 462     |
| 2009-10               | 3 993 949     | 3 982 595     | 3 144 777    | 4 124 527  | 5 412 777    | 38 752 454     | 59 411 078     |
| 2010-11               | 3 706 379     | 4   84 5   5  | 3 384 938    | 4 321 979  | 5 809 787    | 40 378 356     | 61 785 954     |
| 2011-12               | 3 543 049     | 4 344 420     | 3 519 968    | 4 452 806  | 6 106 775    | 41 523 159     | 63 490 176     |
| 2012-13               | 3 478 186     | 4511386       | 3 589 702    | 4 583 713  | 6 349 330    | 42 608 107     | 65 120 423     |
| 2013-14               | 3 491 810     | 4718662       | 3 634 175    | 4 748 178  | 6 602 940    | 43 945 751     | 67   4   5   5 |
| 2014-15               | 3 504 690     | 4 872 178     | 3 700 185    | 4 861 309  | 6 772 016    | 44 930 259     | 68 640 636     |
| 2015-16               | 3511619       | 4 979 521     | 3 761 692    | 4 931 317  | 6 876 119    | 45 591 995     | 69 652 263     |
| 2016-17               | 3 540 203     | 5 110 357     | 3 851 907    | 5 021 965  | 6 999 327    | 46 467 892     | 70 991 651     |
| 2017-18               | 3 599 385     | 5 289 329     | 3 986 990    | 5 149 546  | 7  7  633    | 47 730 946     | 72 927 829     |
| 2018-19               | 3 650 622     | 5 444 872     | 4 106 649    | 5 256 048  | 7313901      | 48 808 047     | 74 580 139     |
| 2019–20               | 3 682 380     | 5 560 996     | 4 194 031    | 5 328 269  | 7 407 066    | 49 562 497     | 75 735 240     |
| 2020-21               | 3 751 677     | 5 685 585     | 4 286 954    | 5 438 086  | 7 555 282    | 50 590 228     | 77 307 811     |
| 2021-22               | 3 822 826     | 5812071       | 4 381 371    | 5 549 441  | 7 705 203    | 51 634 104     | 78 905 016     |
| 2022–23               | 3 895 566     | 5 940 585     | 4 477 336    | 5 662 490  | 7 857 159    | 52 694 897     | 80 528 033     |
| 2023–24               | 3 969 762     | 6 071 249     | 4 574 914    | 5 777 361  | 8 011 405    | 53 773 431     | 82   78   23   |
| 2024–25               | 4 045 320     | 6 204 115     | 4 674 136    | 5 894 113  | 8   68 068   | 54 870 036     | 83 855 789     |
| 2025–26               | 4   22   86   | 6 339 221     | 4 775 027    | 6 012 780  | 8 327 226    | 55 984 936     | 85 561 377     |
| 2026–27               | 4 200 328     | 6 476 600     | 4 877 611    | 6   33 388 | 8 488 929    | 57     8 3   4 | 87 295 170     |
| 2027–28               | 4 279 711     | 6 6 1 6 2 5 4 | 4 981 889    | 6 255 930  | 8 653 173    | 58 270 093     | 89 057 051     |
| 2028–29               | 4 360 325     | 6 758 209     | 5 087 884    | 6 380 423  | 8 819 983    | 59 440 413     | 90 847 237     |
| 2029–30               | 4 442 161     | 6 902 488     | 5 195 614    | 6 506 879  | 8 989 372    | 60 629 399     | 92 665 913     |
| Average growth rate ( | (per cent per | annum)        |              |            |              |                |                |
| Actual historical     | 11.25         | 4.29          | 2.30         | -0.33      | -1.68        | 0.93           | 1.48           |
| 2007–08 to 2029–30    | -1.16         | 3.04          | 2.82         | 2.87       | 3.59         | 2.55           | 2.43           |
| 2007–08 to 2012–13    | -9.53         | 4.76          | 4.94         | 5.61       | 8.96         | 4.09           | 3.58           |
| 2012–13 to 2029–30    | 1.45          | 2.53          | 2.20         | 2.08       | 2.07         | 2.10           | 2,10           |

#### TC.7 Coastal non-containerised freight by port of destination

Source: ABS (2009a), BITRE modelling.

#### **TC.8** Temporary arrivals and departures by sea

| Financial year                           | Arrivals | Departures | Total   |
|------------------------------------------|----------|------------|---------|
| -                                        |          | (persons)  |         |
| 1995–96                                  | 14 322   | 6 434      | 20 756  |
| 1996–97                                  | 13 404   | 3 794      | 17 198  |
| 1997–98                                  | 20 324   | 3 739      | 24 063  |
| 1998–99                                  | 29 885   | 6 4        | 41 499  |
| 1999–00                                  | 25 05 1  | 12 924     | 37 975  |
| 2000–01                                  | 29 453   | 15 848     | 45 301  |
| 2001–02                                  | 23 544   | 7 065      | 30 609  |
| 2002–03                                  | 14 957   | 4 393      | 19 350  |
| 2003–04                                  | 14 852   | 7 586      | 22 438  |
| 2004–05                                  | 14 356   | 5 424      | 19 780  |
| 2005–06                                  | 16 700   | 8 820      | 25 520  |
| 2006–07                                  | 20 735   | 7811       | 28 546  |
| 2007–08                                  | 28 256   | 8 238      | 36 494  |
| 2008–09                                  | 28  6    | 18 680     | 46 841  |
| 2009–10                                  | 22 507   | 14 672     | 37 179  |
| 2010-11                                  | 20 478   | 13 546     | 34 024  |
| 2011-12                                  | 19 743   | 13 109     | 32 852  |
| 2012-13                                  | 19 550   | 13 1 19    | 32 669  |
| 2013–14                                  | 19610    | 13 544     | 33 154  |
| 2014–15                                  | 19 787   | 13 843     | 33 63 1 |
| 2015–16                                  | 20 036   | 13 980     | 34 016  |
| 2016–17                                  | 20 325   | 14 300     | 34 625  |
| 2017–18                                  | 20 638   | 14 915     | 35 553  |
| 2018–19                                  | 20 967   | 15 412     | 36 379  |
| 2019–20                                  | 21 307   | 15 684     | 36 991  |
| 2020–21                                  | 21 658   | 16 158     | 37 816  |
| 2021–22                                  | 22 017   | 16 650     | 38 667  |
| 2022–23                                  | 22 384   | 17 159     | 39 543  |
| 2023–24                                  | 22 760   | 17 685     | 40 445  |
| 2024–25                                  | 23   44  | 18 230     | 41 374  |
| 2025–26                                  | 23 536   | 18 794     | 42 331  |
| 2026–27                                  | 23 937   | 19 378     | 43 316  |
| 2027–28                                  | 24 347   | 19 984     | 44 331  |
| 2028–29                                  | 24 765   | 20 61 1    | 45 376  |
| 2029–30                                  | 25 193   | 21 261     | 46 454  |
| Average growth rate (per cent per annum) |          |            |         |
| Actual historical                        | 5.83     | 2.08       | 4.81    |
| 2007–08 to 2029–30                       | -0.52    | 4.40       | 1.10    |
| 2008–09 to 2013–14                       | -7.10    | 9.75       | -2.19   |
| 2013–14 to 2029–30                       | 1.50     | 2.88       | 2.09    |

Source:

ABS (2009b), LMIU (2009), BITRE modelling. Historical growth rates for temporary arrivals and departures includes figures from 1992–93 to 1994–95 not shown in table. Note:

| Financial year      | Containership        | Bulk carrier | General cargo | Non-freight | Total    |
|---------------------|----------------------|--------------|---------------|-------------|----------|
|                     | ·                    |              | (port call    | s)          |          |
| 1995–96             | 4 624                | 9 247        | 3 044         | 905         | 17 820   |
| 1996–97             | 5 527                | 10 488       | 3 472         | 904         | 20 391   |
| 1997–98             | 5 806                | 11 725       | 3 508         | 58          | 22 197   |
| 1998–99             | 5 419                | 11 880       | 3 445         | 39          | 21 883   |
| 1999–00             | 5711                 | 12 108       | 3 759         | 68          | 22 746   |
| 2000-01             | 5 507                | 12 184       | 3 599         | 48          | 22 438   |
| 2001-02             | 5 628                | 11 340       | 3 450         | 333         | 21 751   |
| 2002–03             | 5 934                | 11 805       | 3 692         | 2 056       | 23 487   |
| 2003–04             | 5 502                | 12 175       | 3 733         | 2 786       | 24 196   |
| 2004–05             | 5 969                | 12 973       | 3 721         | 3 439       | 26 102   |
| 2005–06             | 6 444                | 13 180       | 3 780         | 2 641       | 26 045   |
| 2006–07             | 6 755                | 13 668       | 3 660         | 2 242       | 26 325   |
| 2007–08             | 7  6                 | 14 439       | 3 633         | 2 201       | 27 434   |
| 2008–09             | 6 408                | 14 884       | 3 269         | 2   43      | 26 704   |
| 2009-10             | 6612                 | 14 589       | 3 666         | 2 160       | 27 027   |
| 2010-11             | 6713                 | 14 850       | 3 679         | 2 180       | 27 421   |
| 2011-12             | 6 801                | 15 150       | 3 693         | 2 201       | 27 845   |
| 2012-13             | 6914                 | 15 468       | 3 708         | 2 225       | 28 315   |
| 2013-14             | 7 091                | 15 807       | 3 725         | 2 253       | 28 876   |
| 2014-15             | 7 23 1               | 16 136       | 3 741         | 2 278       | 29 386   |
| 2015-16             | 7 332                | 16 464       | 3 757         | 2 302       | 29 854   |
| 2016-17             | 7 479                | 16 816       | 3 774         | 2 329       | 30 398   |
| 2017-18             | 7 700                | 17 201       | 3 792         | 2 362       | 31 056   |
| 2018-19             | 7 903                | 17 593       | 3811          | 2 394       | 31 702   |
| 2019–20             | 8 062                | 17 985       | 3 830         | 2 424       | 32 302   |
| 2020-21             | 8 28 1               | 18 405       | 3 85 1        | 2 459       | 32 996   |
| 2021-22             | 8515                 | 18 844       | 3 872         | 2 495       | 33 727   |
| 2022–23             | 8 768                | 19 301       | 3 894         | 2 534       | 34 497   |
| 2023–24             | 9 040                | 19 779       | 3 917         | 2 575       | 35 310   |
| 2024–25             | 9 332                | 20 277       | 3 941         | 2617        | 36   68  |
| 2025–26             | 9 648                | 20 797       | 3 967         | 2 663       | 37 075   |
| 2026–27             | 9 989                | 21 341       | 3 993         | 2711        | 38 034   |
| 2027–28             | 10 358               | 21 909       | 4 02          | 2 761       | 39 048   |
| 2028–29             | 10 756               | 22 502       | 4 049         | 2 815       | 40 1 2 3 |
| 2029–30             | 88                   | 23   22      | 4 079         | 2 872       | 41 262   |
| Average growth rate | (per cent per annum) |              |               |             |          |
| Actual historical   | 1.46                 | 2.16         | 1.38          | 8.23        | 2.19     |
| 2007–08 to 2029–30  | 2.05                 | 2.16         | 0.53          | 1.22        | 1.87     |
| 2008–09 to 2013–14  | -0.70                | 1.39         | 0.41          | 0.21        | 0.63     |
| 2013-14 to 2029-30  | 2.87                 | 2.39         | 0.56          | 1.51        | 2.24     |

#### TC.9 Vessel activity at Australian ports

Source:

ABS (2009b), LMIU (2009), BITRE modelling. Historical growth rates for temporary arrivals and departures includes figures Note:

## References

ABS—see Australian Bureau of Statistics

Access Economics (2009), Business outlook (December 2009 edition), Access Economics, Canberra

Australian Bureau of Statistics (2009a), International cargo statistics, unpublished

Australian Bureau of Statistics (2009b), Overseas arrivals and departures [data available on request]

BITRE—see Bureau of Infrastructure, Transport and Regional Economics

BTRE—see Bureau of Transport and Regional Economics

Bureau of Infrastructure, Transport and Regional Economics (2009), *Waterline*, issue 45 and previous issues, Canberra

Bureau of Infrastructure, Transport and Regional Economics (2008), *Coastal freight survey,* unpublished

Bureau of Transport and Regional Economics (2006), Container and ship movements through Australian ports 2004–05 to 2024–25 (working paper 65), BTRE, Canberra

Flinders Ports (2010), Container statistics, unpublished

Fremantle Ports (2010), Container statistics, unpublished

IMF-see International Monetary Fund

International Monetary Fund (2009), *World economic outlook (October 2009 edition)*, <a href="http://www.imf.org/external/pubs/ft/weo/2009/01/weodata/index.aspx">http://www.imf.org/external/pubs/ft/weo/2009/01/weodata/index.aspx</a>, accessed November 2009

Littell RC, Milliken GA, Stroup WW, and Wolfinger RD (1996), SAS system for mixed models, SAS publishing, Cary NC, USA

Lloyds Maritime Intelligence Unit (2009), Vessel movement data, unpublished

LMIU—see Lloyds Maritime Intelligence Unit

Lubulwa G, Bolin R, and Lightfoot A (2009), *Australian sea port activity to 2029–30*, Australasian Transport Research Forum 2009, Auckland, NZ

Port of Brisbane (2010), Container statistics, unpublished

Port of Melbourne (2010), Container statistics, unpublished

Ports Australia (2009), *Trade statistics*, <http://portsaustralia.com.au/tradestats/>, accessed July 2009

Sydney Ports (2010), Container statistics, unpublished

Tasports (2010), Container statistics, unpublished

Treasury (2007), Intergenerational report 2007, Commonwealth of Australia, Canberra

Treasury (2009), Budget 2009, Commonwealth of Australia, Canberra

UNESCAP see United Nations Economic and Social Commission for Asia and the Pacific

United Nations Economic and Social Commission for Asia and the Pacific (2001), *Maritime policy planning model: Regional shipping and port development strategies under a changing maritime environment*, <a href="http://www.unescap.org/publications/detail.asp?id=455">http://www.unescap.org/publications/detail.asp?id=455</a>, accessed July 2009